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ABSTRACT

Rotated object detection is a promising yet challenging task
in computer vision. Existing algorithms mainly train the
rotated detector by the Ln-norm loss, which is inconsistent
with the evaluation metric of Intersection over Union (IoU).
However, the concise and efficient solution using the loss
based on IoU between oriented boxes is hindered by its non-
differentiability. In this paper, we propose Elliptic Energy
Loss, a differentiable loss based on curve energy, to fit with
the evaluation metric IoU. Specifically, given a pair of pre-
dicted and ground truth boxes, we first convert them to curve
representations using the elliptic transformation. Then, the
curve energy is calculated to measure the similarity between
the predicted and ground truth curves. Finally, the curve en-
ergy is used as regression loss to optimize rotated detectors.
We conduct experiments with different detectors on DOTA
and HRSC2016 datasets, which demonstrate that the perfor-
mance is significantly improved by our proposed loss. The
code is available at https://github.com/zhangc-uestc/EEL.

Index Terms— Object detection, rotated object detection,
regression loss

1. INTRODUCTION

Rotated object detection is a fundamental task in computer
vision, with various applications in environmental change
monitoring [1] and intelligent transportation [2]. Compared
with horizontal object detection [3–5], rotated object detec-
tion regresses oriented bounding boxes (OBBs) that locate
objects more tightly, which exhibits apparent advantages
when detecting objects with arbitrary orientation and dense
arrangements [6–8]. To train rotated detectors, existing al-
gorithms mainly use the Ln-norm loss as the regression
loss. However, the Ln-norm loss fails to accurately reflect
the change in the evaluation metric Intersection over Union
(IoU) [9, 10], which limits the performance of rotated de-
tectors. As is demonstrated in horizontal detection, using
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(b) Center offset

Fig. 1. Comparison of our Elliptic Energy Loss with ideal
IoU loss and existing losses such as L1, Smooth L1 [3],
GWD [15], KLD [16], KFIoU [10]. Given predicted and
ground truth OBBs, we compute the loss values of (a) angle
difference and (b) center offset.

IoU loss or its variants [11–13] can effectively solve this in-
consistency problem. Unfortunately, these solutions cannot
be applied to rotated detection since the calculation of IoU
between OBBs (called SkewIoU [14]) is non-differentiable.

To narrow the gap between the regression loss and the
evaluation metric, IoU-Smooth L1 loss [17] takes the nega-
tive logarithm of SkewIoU as the magnitude of the gradient
directly, PIoU [9] estimates the intersection of two OBBs in
a pixel-wise manner. These methods improved the accuracy
of localization, but the inconsistency problem is only par-

3384978-1-7281-9835-4/23/$31.00 ©2023 IEEE ICIP 2023

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 Im

ag
e 

Pr
oc

es
si

ng
 (I

C
IP

) |
 9

78
-1

-7
28

1-
98

35
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
IP

49
35

9.
20

23
.1

02
22

61
0

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 14,2023 at 15:31:56 UTC from IEEE Xplore.  Restrictions apply. 



tially solved. Recently, Gaussian-based losses (GWD [15],
KLD [16], KFIoU [10]) are proposed to mimic the mecha-
nism of SkewIoU using Gaussian distribution, which achieves
superior performance. Despite their success, as illustrated in
Fig. 1, Gaussian-based losses do not completely fit the IoU
loss. In the center offset case, GWD and KLD tend to be con-
stant as the distance increases. It is also the flaw of IoU loss,
which is suboptimal for initial learning of detectors.

In this paper, we propose a new regression loss called El-
liptic Energy loss, which approximates the non-differentiable
SkewIoU using a differentiable similarity metric called ellip-
tic energy. Specifically, we first convert the predicted OBB
and the ground truth OBB to their inscribed ellipse represen-
tations. Then we use the energy function inspired by the ac-
tive contour model [18] to measure the similarity between the
predicted curve and the ground truth curve. Since the curve
transformation and the energy calculation are differentiable,
they can be applied as the regression loss. As shown in Fig. 1,
our loss is the closest approximation to SkewIoU compared
with other losses. We conduct various experiments on two
popular datasets, DOTA and HRSC2016, to validate the ef-
fectiveness of our method, achieving obvious gains over the
baseline and state-of-the-art performance.

2. PROPOSED METHOD

Rotated detection aims at locating objects in images using
OBBs that are typically represented by 5 parameters (xc, yc,
w, h, θ), which stand for the center of the object, width (long
side), height (short side), and the angle from the positive di-
rection of the x-axis to the direction parallel to w in the Long
Edge definition [14]. To train the rotated detector, regression
loss is required to measure the difference between the pre-
dicted and ground truth OBBs. In this paper, we propose El-
liptic Energy loss, in which we first convert OBBs into elliptic
curve representations (Sec 2.1), and then calculate the energy
of curves (Sec 2.2), which can finally be used as the regres-
sion loss (Sec 2.3) that fits the SkewIoU well.

2.1. Curve representation of the object

Given two OBBs, we transform them into their curve rep-
resentations, which should be continuous and differentiable.
Thus, we propose to describe the object using the inscribed
elliptic curve of OBB, which can be formulated as follows:

frt(x, y) =
[(x− xc) cos θ + (y − yc) sin θ]

2

(w/2)2

+
[(y − yc) cos θ − (x− xc) sin θ]

2

(h/2)2

= 1,

(1)

where xc, yc, w, h, θ are parameters of OBB, and (x, y) is the
point on the ellipse if frt(x, y) = 1. Similarly, the relative
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Fig. 2. Illustration of the curve energy. Mask is constructed
in terms of the ground truth curve T . The internal energy
Ein(C) in Eq. (2) comes from the yellow region, where c1
is the average of the yellow region. The external energy
Eout(C) comes from the blue region, where c2 is the aver-
age of the blue region.
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Fig. 3. Diagram of normalization. For given two boxes,
OBB1 and OBB2, we first find their external horizontal box
HBB (the smallest enclosing box covering two boxes) and its
relevant parameters including the upper left corner (xul, yul),
the lower right corner (xlr, ylr), the width w and the height
h. Then we calculate the scale factor scale, and the vertex
coordinates (xnew, ynew) of the new boxes using scale and
(xul, yul), so that the new boxes are limited to tsize× tsize.

position from any point (x, y) to the ellipse can be determined
by frt(x, y). In this way, object representation is transformed
from the bounding box to the elliptic curve, which facilitates
the similarity measure between curves later.

2.2. Similarity measure between curves

After elliptic transformation of OBBs, we then measure the
similarity between the predicted curve C and the ground truth
curve T . Inspired by the active contour model [18], we weigh
the similarity with customized energy, which contains two fit-
ting items as Eq. (2).

E(C) = Ein(C) + Eout(C)

=

∫
inside(C)

|MT (x, y)− c1|2dxdy

+

∫
outside(C)

|MT (x, y)− c2|2dxdy,

(2)
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in which

MT (x, y) =

{
1, if fT

rt(x, y) ≤ 1

0, otherwise.
(3)

where Ein(C) and Eout(C) represent the internal and exter-
nal energies of C on MT , respectively. MT is a special image
we construct with T that corresponds to the input image in
the active contour model, where pixel values inside and in-
cluding T are 1 and pixel values outside T are 0, as shown
in Fig. 2. The constants c1, c2 represent the averages of MT

inside and outside C, respectively. Eq. (2) shows that if C
is identical to T or completely inside T , Ein(C) = 0, other-
wise Ein(C) > 0, which indicates that minimizing the inter-
nal energy tightens the curve C inwards. And if C is iden-
tical to T or completely outside T , Eout(C) = 0, otherwise
Eout(C) > 0, which means that minimizing the external en-
ergy stops the curve C when C shrinks to T . Finally, fitting
energy is minimized when C = T .

However, we observe that Eq. (3) is not a continuous and
differentiable function. It will break the back propagation of
the gradient if we use Eq. (3) directly. Inspired by PIoU [9],
we update Eq. (3) based on a kernel function:

M(x, y) ≈ K(frt(x, y), 1) (4)

in which
K(d, s) = 1− 1

1 + e−k(d−s)
(5)

where K(d, s) is the kernel function, k(> 0) is an adjustable
factor that controls the sensitivity. K(d, s) tends to 0 when
d > s, and tends to 1 when d < s. Thus, K(frt(x, y), 1)
can be used as a continuous and differentiable alternative to
Eq. (3).

To simplify the calculation, we also construct the mask
MC corresponding to the predicted curve C, so that Eq. (2)
can be computed as follows:

E(C) =
∑
x,y

[MC(x, y)× (MT (x, y)− c1)]
2

+
∑
x,y

[(1−MC(x, y))× (MT (x, y)− c2)]
2

(6)

in which

c1 =

∑
x,y MC(x, y)×MT (x, y)∑

x,y MC(x, y)
(7)

c2 =

∑
x,y(1−MC(x, y))×MT (x, y)

W ×H −
∑

x,y MC(x, y)
(8)

where W (H) represents the width (height) of the MC , which
is also the width (height) of the input image and MT . x ∈
[0,W ), y ∈ [0, H). By this way, the similarity between the
predicted and the ground truth curve can be measured using
defined energy, i.e., Eq. (6)-(8).

2.3. Regression loss

Note that the calculation above is done pixel by pixel. To
lower the consumption of computational resources, we sug-
gest normalizing oriented boxes first. The specific steps are
depicted in Fig. 3, where tsize is the size after normalizing
and is generally set to 50 or 100. It further ensures scale
invariance of the loss with rescaling operations. Following
normalization, all pixel-wise calculations are restricted to the
range of tsize × tsize, thus only tsize × tsize is needed to
construct the mask, that is, x ∈ [0, tsize), y ∈ [0, tsize).
But the normalization method shown in Fig. 3 introduces a
new problem. Assuming that the predicted box is far away
from the ground truth box, their external horizontal box will
be large, resulting in the predicted and ground truth boxes be-
coming small after rescaling. The slight difference between
MT and MC will result in a small loss. This means that the
current method is not suitable for measuring predicted and
ground truth boxes that are far apart, as the ideal loss should
increase with their distance. To fix this problem, we add the
distance between the centers of the predicted and ground truth
boxes to the loss as center loss, so that the center loss takes
the lead when the two boxes are far away, and the energy takes
the lead otherwise.

We select Smooth L1 loss as the center loss, and condense
energy using a linear function as the energy loss, which are
indicated by Eq. (9) and Eq. (10).

Lct(t, t
∗) =

1

2

∑
j∈{x,y}

Smooth L1(tj − t∗j ) (9)

Le(b, gt) = λE(C, T ) (10)

where t (t∗) denotes the offset from the center of the pre-
dicted box (the ground truth box) to the center of the anchor
box. tx =

xc−x′
c

w′ , ty =
yc−y′

c

h′ , t∗x =
x∗
c−x′

c

w′ , t∗y =
y∗
c−y′

c

h′ .
xc, yc, w, h denote the center coordinates, width, and height
of the box, respectively. Variables xc, x

′
c, x

∗
c are for the pre-

dicted box, anchor box, and ground-truth box (likewise for
yc, w, h). b and gt represent the predicted box and ground
truth box, respectively. λ is hyper-parameter determined by
follow-up experiments.

The entire regression loss is as follows:

L =
1

Npos

Npos∑
i=1

Lct (ti, t
∗
i ) + Le (bi, gti) (11)

where Npos indicates the number of positive samples.

3. EXPERIMENTS

3.1. Datasets and Implementation Details

We conduct experiments on DOTA [19] and HRSC2016 [2],
which are the most common datasets for oriented object de-
tection. All experiments are implemented by MMRotate [20]
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Table 1. Ablation study of hyperparameters with the
RetinaNet-HBB detector on DOTA. The bold and underlined
fonts indicate the top two performances, respectively. The
metric is mAP50.

Parameter λ = 1/500 λ = 1/1000 λ = 1/2000
k = 10 68.85 70.31 70.05
k = 100 68.19 69.50 69.76
k = 1000 66.89 68.57 68.63

Table 2. Ablation study of hyperparameters with the
RetinaNet-HBB detector on HRSC2016. The metrics used
are AP50 / AP75 / mAP50:95.

Parameter λ = 1/500 λ = 1/1000 λ = 1/2000
k = 10 86.8 / 60.3 / 54.49 87.4 / 68.9 / 57.75 86.7 / 70.9 / 59.60
k = 100 85.6 / 60.3 / 54.02 87.0 / 69.1 / 56.22 86.6 / 69.1 / 58.69
k = 1000 84.9 / 53.5 / 48.58 86.3 / 59.7 / 53.73 85.7 / 68.9 / 56.99

Table 3. Comparisons with peer losses under different detec-
tors on DOTA. The definition methods of oriented boxes on
both detectors are OpenCV Definition (θ ∈ (0, π

2 ]). The val-
ues in brackets show the gain or reduction of each loss relative
to the Smooth L1 loss.

Model Reg.Loss mAP50

RetinaNet-HBB [5]

Smooth L1 65.08
GWD [15] 68.70(+3.62)
KLD [16] 69.39(+4.31)

KFIoU [10] 69.48(+4.40)
EEL (Ours) 70.31(+5.23)

R3Det [8]

Smooth L1 69.01
GWD [15] 72.42(+3.41)
KLD [16] 72.73(+3.72)

KFIoU [10] 72.25(+3.24)
EEL (Ours) 73.15(+4.14)

Table 4. Comparisons with peer losses under different detec-
tors on HRSC2016.

Model Reg.Loss AP50 AP75 mAP50:95

RetinaNet-HBB [5]

Smooth L1 81.3 54.5 48.18
GWD [15] 84.9(+3.6) 67.1(+12.6) 55.98(+7.8)
KLD [16] 86.8(+5.5) 69.6(+15.1) 58.48(+10.3)

KFIoU [10] 84.7(+3.4) 60.4(+5.9) 54.61(+6.43)
EEL (Ours) 86.7(+5.4) 70.9(+16.4) 59.60(+11.42)

R3Det [8]

Smooth L1 86.2 57.6 52.33
GWD [15] 87.0(+0.8) 69.7(+12.1) 58.55(+6.22)
KLD [16] 87.5(+1.3) 68.2(+10.6) 55.92(+3.59)

KFIoU [10] 86.5(+0.3) 68.8(+11.2) 57.51(+5.18)
EEL (Ours) 88.5(+2.3) 68.2(+10.6) 55.77(+3.44)

using one TITAN Xp GPU. We set batch size to 2 and train
models on DOTA and HRSC2016 for 12 and 72 epochs, re-
spectively. For fair comparison, we use the same configura-
tion to train the models, except with different losses.

3.2. Ablation Studies

In Table 1 and Table 2, we conduct ablation experiments on
the hyperparameter settings of k and λ in our elliptic energy

Sm
oo

th
 L

1
 E

EL
 (O

ur
s)

DOTA HRSC2016

Fig. 4. Qualitative comparison between the Smooth L1 loss
and the proposed Elliptic Energy loss with same RetinaNet-
HBB detector on DOTA and HRSC2016.

loss on DOTA and HRSC2016 datasets. As can be seen, per-
formance drops rapidly when k increases. The reason may be
that a larger k will cause a larger gradient of the loss, making
the loss more sensitive to prediction errors during training.
Also, choosing a smaller λ can improve performance when
given a larger k. As suggested by Table 1 and Table 2, we set
k = 10, λ = 1/1000 on DOTA, and k = 10, λ = 1/2000 on
HRSC2016 for subsequent experiments.

3.3. Comparisons with previous methods

In Table 3 and Table4, we compare our method with previ-
ous regression losses, such as Smooth L1 [3], GWD [15],
KLD [16] and KFIoU [10]. We train RetinaNet-HBB [5]
and R3Det [8] detectors on DOTA and HRSC2016 datasets
using different regression losses. Smooth L1 loss is used
as the baseline. As the results show, on DOTA dataset, our
method achieves mAP50 = 70.31% and mAP50 = 73.15%
using RetinaNet-HBB and R3Det, which is the best com-
pared with previous methods. On HRSC2016 dataset, our
method can also produce superior results of AP75 = 70.9%
and mAP50:95 = 59.60% using RetinaNet-HBB and AP50 =
88.5% using R3Det. The qualitative comparison between the
Smooth L1 loss and our proposed loss is shown in Fig. 4. As
a result, the model trained by our loss can locate objects more
precisely than the model trained by the Smooth L1 loss.

4. CONCLUTIONS

In order to alleviate the inconsistency between the regression
loss and the evaluation metric, this paper proposes the Elliptic
Energy loss. The loss first converts the paired predicted box
and the ground truth box into their corresponding curve rep-
resentations, and then utilizes the curve energy to assess how
similar the predicted curve and the ground truth curve are.
Additionally, by transforming it appropriately and increasing
the center loss, it can be used for training. Numerous exper-
iments on DOTA and HRSC2016 demonstrate the effective-
ness of our loss.
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