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Abstract
Estimating per-pixel motion between video frames, known as
optical flow, is a long-standing problem in video understand-
ing and analysis. Most contemporary optical flow techniques
largely focus on addressing the cross-image matching with
feature similarity, with few methods considering how to ex-
plicitly reason over the given scene for achieving a holistic
motion understanding. In this work, taking a fresh perspec-
tive, we introduce a novel graph-based approach, called adap-
tive graph reasoning for optical flow (AGFlow), to empha-
size the value of scene/context information in optical flow.
Our key idea is to decouple the context reasoning from the
matching procedure, and exploit scene information to effec-
tively assist motion estimation by learning to reason over the
adaptive graph. The proposed AGFlow can effectively exploit
the context information and incorporate it within the match-
ing procedure, producing more robust and accurate results.
On both Sintel clean and final passes, our AGFlow achieves
the best accuracy with EPE of 1.43 and 2.47 pixels, outper-
forming state-of-the-art approaches by 11.2% and 13.6%, re-
spectively. Code is publicly available at https://github.com/
megvii-research/AGFlow.

Introduction
Optical flow is a fundamental task in video understanding
and analysis, aiming to estimate the pixel-wise correspon-
dence between two video frames. It has drawn continuous
attention from both academia and industry due to its wide
applications, e.g., person-identification (Chen et al. 2020),
visual tracking (Vihlman and Visala 2020) and video in-
painting (Xu et al. 2019). Recent years have witnessed sig-
nificant breakthroughs made to push its performance fron-
tier (Dosovitskiy et al. 2015; Ilg et al. 2017; Teed and Deng
2020; Jiang et al. 2021b), but it remains challenging due to
inherent ambiguity in textures, large displacements, occlu-
sions, motion blur, and non-Lambertian effects.

Traditional optical flow algorithms formulate the dense
matching as an energy minimization problem based on fea-
ture constancy and spatial smoothness (Horn and Schunck
1981; Brox et al. 2004; Bruhn, Weickert, and Schnörr 2005).
However, because the hand-designing features and opti-
mization objectives are difficult to cover all scenarios, these
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Figure 1: A challenging image pair with heavy motion blur
from the final pass of Sintel test set. Unlike previous
state-of-the-art methods (RAFT (Teed and Deng 2020) and
SCV (Jiang et al. 2021b)) suffering from ambiguous match-
ing, our AGFlow is able to perform global reasoning condi-
tioned on scene context for achieving a holistic motion un-
derstanding.

approaches are not robust enough to deal with complex mo-
tions. As a powerful alternative to traditional methods, deep
learning based approaches take the research of optical flow
into a new level. Current optical flow methods have made
great advances in: i) developing powerful data-driven, end-
to-end learning paradigms (Dosovitskiy et al. 2015; Ilg et al.
2017); ii) designing multiple refinement strategies (Sun et al.
2018; Hur and Roth 2019; Zhao et al. 2020b); iii) exploiting
auxiliary information from related tasks (Zhao et al. 2020a);
and iv) modeling pixel-wise relations for all pairs (Teed and
Deng 2020; Jiang et al. 2021b). Although these deep learn-
ing based approaches have shown the strong capability of
matching across frames, they are subject to a significant
limitation: current methods largely focus on addressing the
matching similarity between features, lacking a holistic mo-
tion understanding of the given scene. Thus, the ambigui-
ties (local variations) caused by motion blur, occlusion and
large motions severely degrade the accuracy of current mod-
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els (see Fig. 1), hindering their applications in the real world.
Taking a closer look at current optical flow methods (Sun

et al. 2018; Yang and Ramanan 2019), their success is ma-
jorly attributed to an important component, namely 4D cor-
relation volume, that typically model the correlations be-
tween features across frames. They expect the correlations
achieved by using deep trainable features to surmount all
ambiguities. However, evidence from (Teed and Deng 2020)
indicate that such correlations are vulnerable to variable fea-
ture representations on challenging conditions. To better ag-
gregate context information within motion boundaries, ex-
isting arts (Teed and Deng 2020; Jiang et al. 2021b) in-
ject image features by concatenation operation, and encode
scene information by using extra convolutional layers. But
despite these attempts, the holistic motion understanding
is far from being achieved: i) existing approaches capture
scene information with only naive operations, e.g., feature
stacking, without typed functions for explicitly modeling
such process; ii) their operations are confined to the original
coordinate space, causing a heavy computational burden and
lacking a global understanding of the given scene; and iii)
they ignore the adverse effect caused by ‘domain gap’, e.g.,
the gap between scene content and motion features. These
observations prompted us to think about: how to empower
the optical flow model to effectively obtain the capability of
holistic motion understanding?

To answer this question, we propose to conduct adaptive
graph reasoning within the conventional optical flow frame-
work. Our idea is to decouple the context reasoning from
the matching procedure, and explore scene information to
effectively assist in motion estimation by learning to rea-
son over the adaptive graph. We argue that a powerful opti-
cal flow model should have the capability of going beyond
regular grids, which learns to understand the real-world mo-
tions under the guidance of scene content from a more global
view. Towards this goal, we introduce a novel graph-based
approach, namely adaptive graph reasoning for optical flow
(AGFlow), which embeds graph techniques onto the match-
ing pipeline to enable an effective context reasoning and
information interaction. The proposed AGFlow learns to
match features conditioned on scene context, and allows ob-
jects’ spatial extents to be well aggregated and thus largely
decreases the uncertainty of ambiguous matching.

In particular, AGFlow consists of three major compo-
nents: a motion encoder that maps input frames into high-
level representations for computing their 4D correlation vol-
umes, a context encoder that extracts features only from
the first input frame for capturing scene information, and
an adaptive graph reasoning (AGR) module that learns to
understand the given scene and distills useful information
to assist in optical flow estimation. Unlike existing ap-
proaches (Teed and Deng 2020; Jiang et al. 2021b), our
AGR exploits scene information for optical flow in the
graph domain; that is, both context and motion features are
mapped from regular grids to graph space for learning op-
tical flow together. It enables the model to understand the
motion from a larger context with only limited extra pa-
rameters and FLOPs (see Tab. 3). Importantly, to overcome
the domain gap between context and motion representa-

tions, a novel graph adapter (GA) is introduced to adapt
(motion) graph parameters in a one-shot manner, incorpo-
rating the scene information flexibly. Overall, our approach
helps optical flow models conduct more efficient scene un-
derstanding and naturally distill scene information to as-
sist in optical flow estimation, eventually leading to strong
holistic-motion-understanding capability and better perfor-
mance. The contributions of this work are summarized as
follows:

• A novel graph-based approach for optical flow. To our
knowledge, this is the first work that explicitly exploits
scene information to assist in optical flow estimation by
using graph techniques. The proposed AGFlow can go
beyond the regular grids and reason over the graph space
to achieve a better motion understanding, thus success-
fully handling different challenges in optical flow.
• An adaptive cross-domain graph reasoning approach.

In order to incorporate scene information, we generalize
the learning to adapt mechanism (Bertinetto et al. 2016)
from regular grids to the graph domain. Our designed
graph adapter can fast adapt scene context to guide the
global (motion) graph reasoning in a one-shot manner.
• State-of-the-art results on widely-used benchmarks.

Our AGFlow sets new records on both Sintel and KITTI
benchmarks, outperforming state-of-the-art approaches
by a relatively large margin.

Related Work
Optical Flow Estimation. Optical flow is the task of es-
timating per-pixel motion between video frames. In the
early stage, researchers (Black and Anandan 1993; Horn
and Schunck 1981; Brox et al. 2004; Bruhn, Weickert, and
Schnörr 2005) consider this task as an energy minimization
problem, with the goal of achieving an ideal tradeoff be-
tween feature similarities and motion smoothness. However,
as motion itself is hard to be modeled/described by hand-
crafted features and optimization objectives, it is challenging
to obtain precise flow fields by traditional methods. In the
deep learning era, early attempts mainly focus on i) learning
more robust data terms (Bai et al. 2016; Weinzaepfel et al.
2013) or ii) avoiding the optimization step to directly esti-
mate optical flow (Teed and Deng 2020; Jiang et al. 2021b).
To improve results on optical flow, many recent works in-
troduce stronger learning paradigms that can enable itera-
tive refinement (Ranjan and Black 2017; Sun et al. 2018;
Yang and Ramanan 2019; Hui, Tang, and Loy 2018), explicit
pixel-wise-relation modeling, and joint representation learn-
ing with other tasks (Zhao et al. 2020a). Although remark-
able progress have been achieved by these developments,
there is still a large room for improvement over existing ap-
proaches that largely focus on addressing the matching sim-
ilarity between features without considering how to achieve
a holistic motion understanding. Taking a further step, our
AGFlow is empowered to exploit and incorporate high-level
scene information to predict optical flow, linking the low-
level matches with high-level semantic information for bet-
ter accuracy.
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Graph Neural Networks. Graph Neural Networks have been
widely applied to different applications, including person
re-identification (Shen et al. 2018), salient object detec-
tion (Luo et al. 2020), 3D shape analysis (Wei, Yu, and Sun
2020), semantic segmentation (Luo et al. 2021) and video
question answering (Park, Lee, and Sohn 2021). In the con-
text of optical flow, Graph Convolutional Networks (GCNs)
are still largely under-explored. This is because most ex-
isting approaches largely focus on the matching similar-
ity between features; the high-level scene information is
overlooked or poorly investigated. In this paper, we show
that GCNs can benefit the optical flow by comprehensively
mining the scene information to assist in flow estimation.
It helps the optical model to go beyond regular grids and
understand the motion from a global view. Unlike most
conventional GCN-based models (Mohamed et al. 2020;
Wei, Yu, and Sun 2020; Luo et al. 2021; Park, Lee, and
Sohn 2021) that only focus on a single domain, our GCN-
based AGFlow has the capability of learning to adapt cross-
domain information, fully incorporating scene information
for comprehensive motion understanding.

Methodology
Problem Formulation
Given a pair of input consecutive images, i.e., source im-
age I1 and target image I2, the task of optical flow estima-
tion is to predict a dense displacement field between them.
Deep learning based flow networks commonly employ an
encoder-decoder pipeline to first extract context feature fc
and obtain motion cues fm, and then make flow prediction
based on the fused feature fo in a recurrent/coarse-to-fine
manner.

In our approach, we represent the feature fusion in de-
coder as a graph-based reasoning and learning model, which
is formulated as fo = FG (fc, fm). Specifically, we define the

model as a directed graph G = (V , E), where V indicates a
set of nodes, and E denotes edges specifying the connection
and relation information among nodes. After t runs of graph
reasoning, the updated nodes are then mapped back to the
original coordinate space to predict the displacement field.

Adaptive Graph Reasoning for Optical Flow
Fig. 2 depicts an overview of the proposed adaptive graph
reasoning for optical flow (AGFlow). Following the success
of prior work (Jiang et al. 2021a), we develop our AGFlow
based on RAFT (Teed and Deng 2020). Specifically, given a
pair of input images I1 and I2, we employ two residual block
based encoders (He et al. 2016) to extract a feature pair (f1,
f2) and context feature fc. Then, 4D correlation volumes are
constructed on the feature pair in four scales. In the recurrent
refinement framework, we utilize four convolutions to cap-
ture motion feature fm from the multi-scale matching costs
in each 9 × 9 region. After that, our adaptive graph reason-
ing (AGR) module takes the motion feature fm and context
feature fc as inputs to perform a holistic motion reasoning.
Please refer to RAFT (Teed and Deng 2020) for more details
about the implementations of the baseline model.

Node embedding. The first step is to project context and
motion features in regular coordinate space into graph space.
The projection operation decouples positional information
from the original grid feature, and makes the produced low
dimensional node feature representations more compact and
with sufficient expressive power. Here we divide the mapped
nodes V in graph model into two groups: context nodes
vc = {vc1, · · · , vcn}, containing appearance feature about
shape and region information of scene context, and motion
nodes vm = {vm1, · · · , vmn}, storing motion feature of
cross-image matching dependency.

Specifically, given the context feature fc ∈ Rc×h×w and
motion feature fm ∈ Rc×h×w from encoder network, we
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employ project function Pf→v(·) to assign features with
similar representation to the same node. Let vc ∈ RC×K

and vm ∈ RC×K denote the initial node embeddings in
graph space, where C indicates channel number and K is
the number of nodes.

To build a global graph over a set of regions, we formulate
Pf→v(·) as a linear combination of feature vector in grid
space, i.e., v = Pf→v(f), and thus the produced nodes are
able to aggregate long-range information within the overall
original feature map. This is given by

vi = N (
∑
∀j

Ff→v(f)ij · fj), (1)

where N (·) is a L-2 normalization function conducted on
channel dimension of each node vector, and Ff→v(f) ∈
RN×K models the projection weights for mapping feature
maps to node vectors. Note that our approach can be trained
with arbitrary input resolutions. In practice, we first use two
convolutions on f ∈ Rc×h×w to change the channel dimen-
sion from c to K so that a feature map with resolution of
K × h× w can be obtained. Then a reshape function is ap-
plied to produce Ff→v(f) with resolution N × K, where
N = h × w, and K is a hyperparameter not relying on spa-
tial resolution. Thus the two types of node embedding can
be produced by vc = Pf→v(fc), and vm = Pf→v(fm).

Adaptive Graph Reasoning. Given node embeddings v
in graph space, the adjacency matrix for graph reasoning can
be commonly generated by measuring the similarity among
all node vectors (Li and Gupta 2018), as A = vTv. After
modeling the adjacency matrix A, the graph reasoning with
graph convolutional network (Kipf and Welling 2017) is de-
fined as

v̂ = FG(v,A) = σ(AvTwG), (2)

where σ(·) is a non-linear activation function, and wG is
learnable parameters for graph convolution. v̂ is the updated
node representations with graph reasoning, and it can be it-
eratively enhanced with more runs as v̂(t) = FG(v,A)(t),
where t denotes update iterations.

Let us consider the representation property of context
and motion nodes. Motion nodes mainly encode the point-
wise correspondence between an image pair while neglect-
ing the intra-relations among pixels within regions, the con-
text nodes, on the contrary, capture discriminative features
for region and shape representations. Thus, we need to ad-
dress two hurdles: First, there is an inevitable representation
gap between context and motion nodes, which could hin-
der the effective information propagating of directly overall
graph reasoning. Second, motion nodes lack constraints on
shape or layout for the potential displacement field, and thus
they are unable to yield enough context information for in-
dividual graph reasoning.

To tackle the issues, we propose an adaptive graph rea-
soning (AGR) module to decouple the context reasoning
from the matching procedure, and simultaneously transfer
the region and shape prior of scene context to motion nodes
in a one-shot manner. The key idea is to exploit the discrim-
inative representations of shape and region in global context

Node-wiseChannel-wise

…

…

…

Adaptive KernelContext nodes

Motion Nodes

Adjacent Matrix

Graph Adapter

Dot-product

Figure 3: Architecture of Graph Adapter.

to guide the learning of motion adjacency matrix with adap-
tive parameters. Inspired by (Bertinetto et al. 2016), we de-
vise an adaptive procedure of adjacency matrix learning to
predict dynamic parameters that tailor the motion relation
modeling based on image-specific contextual information.
This is given by

Ă = A(vm; Θ(vc)), (3)

where Θ(·) is a parameter learner, and A(·) denotes a
context-to-motion graph adapter (GA) equipped with dy-
namic weights from Θ(vc). In practice, we implement the
Θ(·) with a linear projection function with a softmax ac-
tivation. As shown in Fig. 3, A(·) is implemented with a
two-layer MLP, where the first regular linear function fol-
lowed by a ReLU activation is applied to perform channel-
wise learning, and then the second linear function with adap-
tive kernel Θ(vc) is utilized to perform node-wise interac-
tion for relation learning with context-to-motion adaptation.
Specifically, given context nodes vc ∈ RC×K , we predict
the adaptive kernel Θ(vc) ∈ RK×K with convolutions on
channel dimension (C → K). Then, we transfer it into the
adaptive weights with shape K × K of the second linear
function, which is used to produce vm

′. Finally, we apply
the dot-product similarity on vm

′ to predict Ă.
The produced parameter Θ(vc) relies on context nodes

for dynamically leveraging the shape and region information
of current input. Thus, motion nodes can be fast adaptive to
scene context and favorably make full use of the transferred
node relation for motion sub-graph reasoning. Thus the en-
hanced context nodes v̂(t)

c are produced by

v̂(t)
c = FG(vc,A)(t), whereA = vT

c vc, (4)

and similarly, motion nodes v̂(t)
m are produced by

v̂(t)
m = FAG(vm, Ă)(t), where Ă = A(vm; Θ(vc)), (5)

and FAG(·) denotes motion nodes reasoning with adaptive
graph convolutional network (AGCN).

Attentive Readout. After t runs of relation reasoning and
state updating, we present an attentive readout module to
project the enhanced context nodes v

(t)
c and motion nodes

v̂
(t)
m from graph space back to grid feature space, making
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Training Data Method Sintel (val) KITTI-15 (val) Sintel (test) KITTI-15 (test)
Clean Final EPE F1-all Clean Final F1-all

C + T

HD3(Yin, Darrell, and Yu 2019) 3.84 8.77 13.17 24.0 - - -
LiteFlowNet(Hui, Tang, and Loy 2018) 2.48 4.04 10.39 28.5 - - -
PWC-Net(Sun et al. 2018) 2.55 3.93 10.35 33.7 - - -
FlowNet2(Ilg et al. 2017) 2.02 3.54 10.08 30.0 3.96 6.02 -
DICL(Wang et al. 2020) 1.94 3.77 8.70 23.6 - - -
RAFT(Teed and Deng 2020) 1.43 2.71 5.04 17.4 - - -
SCV(Jiang et al. 2021b) 1.29 2.95 6.80 19.3 - - -
AGFlow (ours) 1.31 2.69 4.82 17.0 - - -

C + T
+ S + K
(+ H)

PWC-Net+(Sun et al. 2020) (1.71) (2.34) (1.50) (5.3) 3.45 4.60 7.72
IRR-PWC (Hur and Roth 2019) (1.92) (2.51) (1.63) (5.3) 3.84 4.58 7.65
VCN (Yang and Ramanan 2019) (1.66) (2.24) (1.16) (4.1) 2.81 4.40 6.30
MaskFlowNet(Zhao et al. 2020b) - - - - 2.52 4.17 6.10
ScopeFlow(Bar-Haim and Wolf 2020) - - - - 3.59 4.10 6.82
DICL(Wang et al. 2020) (1.11) (1.60) (1.02) (3.6) 2.12 3.44 6.31
RAFT(Teed and Deng 2020) (0.76) (1.22) (0.63) (1.5) 1.61* 2.86* 5.10
SCV(Jiang et al. 2021b) (0.79) (1.70) (0.75) (2.1) 1.77* 3.88* 6.17
AGFlow (ours) (0.65) (1.07) (0.58) (1.2) 1.43* 2.47* 4.89

Table 1: Quantitative comparison with state-of-the-art methods using EPE and F1-all metrics (the lower the better). Following
previous works (Wang et al. 2020; Teed and Deng 2020; Jiang et al. 2021b), we compare our results with all published works on
three passes from two standard benchmarks. “C + T” indicates models are pretrained on FlyingChairs(C) and FlyingThing(T)
to test generalization performance. “+ S + K (+ H)” denotes the training data combining Sintel(S), KITTI(K) and HD1K(H).
“+H” with brackets means it is optional for some works (Teed and Deng 2020; Hui, Tang, and Loy 2018). “*” denotes the
results with warm-start testing (Teed and Deng 2020). The best results are marked in bold for better comparison.

the overall graph interaction model compatible with existing
flow networks. Then the updated feature maps contain both
global contextual information and local pixel-wise matching
cost, which are properly used to make a better prediction for
the flow field.

In particular, we formulate the reverse projection as

f̂ = Pv→f(v̂), (6)

where Pv→f(·) is a linear combination function that map the
node vectors v̂ ∈ RC×K to the feature maps f̂ ∈ RC×N

in the original grid space of flow network. In practice, we
reuse the projection matrix in the node embedding proce-
dure. The projection matrix contains pixel-to-node assign-
ments and preserves the spatial details, which is crucial for
recovering the resolution of feature maps. Besides, no addi-
tional parameters are involved by reusing the region assign-
ments, which also helps to reduce computational overhead.

The context feature f̂c is produced by a residual operation
as

f̂c = fc + αPv→f(vc), (7)
where α denotes a learnable parameter that is initialized as
0 and gradually performs a weighted sum. Similarly, motion
feature f̂m is produced by

f̂m = fm + βPv→f(vm). (8)

Given the enhanced feature f̂c and f̂m, one potential hur-
dle for feature fusion is that context feature lacks correspon-
dence information for cross-image matching, which could
lead to a shift of global displacement and thus affect the flow
accuracy. Therefore, we devise an attentive fusion function,

which first learns to predict a set of scale weights from mo-
tion feature f̂m and then leverages them to implement global
adjustment for entire dense displacement. Specifically, the
attentive fusion function is defined as

fo = (1 + FCA(f̂m))f̂c ⊕ f̂m, (9)

where ⊕ is a concatenation operation, and FCA(·) is a chan-
nel attention function (Hu et al. 2020), here implemented
with two convolutions with ReLU and sigmoid activation.

Experimental Results
Datasets and Evaluation Metrics
We conduct extensive experiments on two standard datasets,
i.e., MPI-Sintel (Butler et al. 2012) and KITTI 2015 (Menze
and Geiger 2015). We follow prior works (Teed and Deng
2020; Jiang et al. 2021b) to utilize two standard evaluation
metrics, i.e., average end-point error (EPE) and the percent-
age of erroneous pixels > 3 pixels (F1-all), to evaluate the
performance of predicted optical flow.

Implementation Details
The implementation of our approach is based on PyTorch
toolbox. In our model, we set the number of context and
motion nodes K to 128. The state updating iterations t are
set to 2 and 1 for context and motion graph, respectively.

During training, we follow prior works (Teed and Deng
2020; Jiang et al. 2021a) to adopt AdamW optimizer with
one-cycle learning rate policy, and conduct model pretrain-
ing on synthetic data as the standard optical flow training
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Figure 4: Qualitative comparisons with RAFT (Teed and Deng 2020) on Sintel and KITTI test set. All results are provided
by the official website of each dataset. Best viewed in color.

procedure. The model is pretrained on FlyingChairs (Doso-
vitskiy et al. 2015) for 180k iterations and then on FlyingTh-
ings (Mayer et al. 2016) for 180k iterations. After that, we
fine-tune the model on combined data from Sintel (Butler
et al. 2012), KITTI-2015 (Menze and Geiger 2015), and
HD1K (Kondermann et al. 2016) for 180k iterations, and
then submit the flow prediction to Sintel server for online
evaluation. Finally, additional 50k iterations of finetuning
are performed on KITTI-2015 (Menze and Geiger 2015) for
KITTI online evaluation. Our model is trained on 2 NVIDIA
GeForce GTX 2080Ti GPUs, and the batch size is set to 8
for better leveraging the GPU memory.

Comparison with State-of-the-Arts
Results on Sintel. On the training set of FlyingChairs
(C) + FlyingThings (T), as shown in Tab. 1, our approach
achieves an average EPE of 1.31 on clean pass of Sintel
dataset, which is competitive with SCV (Jiang et al. 2021b)
and lower than the well-known RAFT (Teed and Deng 2020)
by 8.4% (1.43 → 1.31). On final pass, it obtains a score of
2.69 in EPE, outperforming previous state-of-the-art meth-
ods SCV and RAFT by 8.8% (2.95 → 2.69) and 0.7%
(2.71 → 2.69), respectively. The results demonstrate the
good cross dataset generalization of our model.

On Sintel test set, we follow prior works (Hui, Tang,
and Loy 2018; Hur and Roth 2019; Teed and Deng 2020)
to submit the predicted flow to the official server for on-
line evaluation. Our AGFlow achieves an EPE of 1.68 on
on Sintel clean pass, which surpasses top-ranked methods
RAFT (Teed and Deng 2020) and SCV (Jiang et al. 2021b)
by 13.4% (1.94 → 1.68) and 2.3% (1.72 → 1.68), respec-
tively. Besides, it obtains EPE = 2.83 on final pass, outper-
forming recent SCV by a large margin (21.4%). When uti-
lizing the warm-start strategy, our approach sets new records
of 1.43 EPE on clean pass and 2.47 on final pass, which
significantly surpasses the previous best results by 11.2%
(1.61→ 1.43) and 13.6% (2.86→ 2.47), respectively.

Fig. 4 (line 1 and 2) provides some qualitative compar-
isons with RAFT (Teed and Deng 2020) on the challeng-
ing final pass of Sintel dataset, which demonstrates that our
AGFlow is able to fully exploit scene context to effectively
assist motion estimation with shape and region constraints,

leading to achieving more accurate flow fields with clear mo-
tion boundaries.

Results on KITTI. We also provide the results of our
approach on KITTI-15 dataset. As in Tab. 1, when train-
ing on C + T, our AGFlow achieves an average EPE of
4.82 and F1-all score of 17.0% on KITTI-15 validation set,
which significantly surpass recent method SCV (Jiang et al.
2021b) by 29.1% (6.80→ 4.82) and 11.9% (19.3→ 17.0),
respectively. For online evaluation, our approach achieve
new state-of-the-art performance of 4.89% in F1-all, outper-
forming top-ranked methods SCV (Jiang et al. 2021b) and
RAFT (Teed and Deng 2020) by 20.7% (6.17 → 4.89) and
4.1% (5.10→ 4.89), respectively. Some qualitative compar-
isons with RAFT (Teed and Deng 2020) on KITTI dataset
are illustrated in Fig. 4 (line 3 and 4), which shows that
the proposed global reasoning conditioned on scene context
helps to decrease the uncertainty of ambiguous matching in
some tough regions.

Ablation Analysis
Comparison with Grid Feature Enhancement. We first
compare the proposed AGFlow with widely-used methods
for optical flow that enhance features in regular grid space,
including RAFT (Teed and Deng 2020), dense and dilated
convolutions (Sun et al. 2018; Hur and Roth 2019). As
shown in Tab. 2, dense and dilated convolutions slightly im-
prove the flow accuracy with heavy model complexity. In
contrast, our AGFlow achieves better performance, yet only
needs additional 0.30 M parameters, reducing parameters by
around 90%. This demonstrates that the proposed low di-
mensional graph reasoning scheme is effective to boost the
flow accuracy in an efficient manner.

Comparison with SuperGlue (Sarlin et al. 2020). Su-
perGlue is a well-known method that employs graph neu-
ral network for feature matching. As can be seen in Tab. 2
(line 4), the original SuperGlue on grid feature requires a
large amount of GPU memory, which is out of range with
general settings for model training. Thus we re-implement
SuperGlue with our low dimensional graph model (termed
G-SuperGlue). Compared with G-SuperGlue, our AGFlow
not only achieves considerable performance gain (8.0%), but
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Method Param (M) ↓ Sintel (val) EPE ↓
Clean Final

Grid
Feature

RAFT 5.26 1.65 3.04
+ Dense Convs + 3.34 1.63 2.98
+ Dilated Convs + 0.85 1.66 3.02
+ SuperGlue + 2.99 - -

Graph
Space

GCU (Base) 5.44 1.76 3.14
+ G-SuperGlue + 1.82 1.63 3.01
+ AGR (ours) + 0.12 1.50 2.88

Table 2: Quantitative comparisons with related methods (re-
fer to Sec. for more details). We set RAFT (Teed and Deng
2020) as the baseline model for the method with regular gird
space enhancement. The methods in each part are plugged
into the same baseline and trained on C + T (180k) for fair
comparison.

Settings FLOPs
(G)

Param
(M)

Sintel (val) EPE

Clean Final

Graph
Reasoning

Base Graph 381.06 5.44 1.76 3.14
+ SGR (no GA) + 16.95 + 0.07 1.65 2.97

+ AGR + 17.09 + 0.12 1.50 2.88

Node
numbers

K = 32 + 3.09 + 0.04 1.61 3.02
K = 64 + 5.88 + 0.07 1.56 2.95
K = 128 + 17.09 + 0.12 1.50 2.88
K = 256 + 61.84 + 0.2 1.49 2.90

Attentive
readout

On + 17.09 + 0.12 1.50 2.88
Off + 16.82 + 0.10 1.55 2.94

Table 3: Ablation analysis for different settings of our
AGFlow. “SGR” indicates separated graph reasoning for
context and motion nodes (i.e., without graph adapter),
and “AGR” denotes overall adaptive graph reasoning. All
methods are trained on C + T (180k) for fair comparison.
Underline indicates the default settings in our model.

also reduces parameters by 85%. This is because our adap-
tive graph reasoning scheme is simple yet effective, and ca-
pable of fast transferring the region and shape prior from
scene context to motion nodes in a one-shot manner.

Comparison with GCU (Li and Gupta 2018). We also
compare our AGFlow with the basic region-based graph rea-
soning model (Li and Gupta 2018). Since GCU projects all
feature maps into a single type of node, it requires fewer
parameters than other methods. However, as we mention
above, the representation gap between context and motion
feature hinders the effectiveness of relation reasoning with a
simple graph, thus resulting in a performance drop on both
passes of Sintel. We regard it as the base graph model, as
in line 5 of Tab. 2. In contrast, we carefully project fea-
ture maps into context and motion nodes, and further pro-
pose an adaptive graph reasoning approach to perform the
task-specific hybrid reasoning, allowing our model to signif-
icantly reduce the average end-point error by around 14.8%.

Effectiveness of Adaptive Graph Reasoning. In Tab. 3,
we empirically analyze the computational cost and corre-
sponding performance gain of the core component in the
proposed AGFlow. Using separated context and motion rea-
soning based on graph model boosts the performance by

Method Param (M) ↓ Time (ms) ↓
RAFT 5.26 (-) 86.9 (-)
GMA 5.8 (+ 0.54) 113.8 (+ 26.9)

AGFlow 5.56 (+ 0.30) 90.7 (+ 3.8)

Table 4: Computational comparisons with state-of-the-arts
on a single Geforce RTX 2080Ti GPU.

5.4% ∼ 6.3%. Besides, we further incorporate the pro-
posed graph adapter into the context-to-motion interaction,
and then yield the proposed adaptive graph reasoning (AGR)
module, which brings about 9% additional performance gain
with only 0.14 G FLOPs and 0.05 M parameters for extra
computational overhead.

Ablation for Node Numbers. We empirically show the
influences of node numbersK in our graph model. As shown
in Tab. 3, when more nodes are used (32 → 64 → 128),
the average end-point error are gradually decreased from
1.61 on Sintel clean pass and 3.02 on final pass to 1.50
and 2.88, respectively. However, if furthermore nodes are in-
volved (128 → 256), the flow accuracy almost remains the
same and the computational overhead is largely increased
by 2.6 times. This is because some redundant feature repre-
sentations are generated with nodes, which brings no benefit
to flow estimation. Therefore, we set K = 128 to ensure a
good balance between efficiency and performance.

Ablation for Attentive Readout. We also test the influ-
ence of attentive readout compared with regular readouts (Li
and Gupta 2018) in Tab. 3. As can be seen, incorporating it
into our model brings about 3% in performance gain and
only requires negligible computation cost and parameters,
demonstrating the cost-effective property of this component.

Runtime Comparison. We provide the parameters and
runtime of state-of-the-art methods in Tab. 4. Compared
with GMA (Jiang et al. 2021a), our AGFlow can achieve
competitive performance while reducing 0.24 M parameters.
Besides, the inference speed is boosted by 20.3% (113.8→
90.7). The comparisons clearly demonstrate the effective-
ness of our AGFlow.

Conclusion
In this paper, we present a novel graph-based approach
termed adaptive graph reasoning for optical flow (AGFlow),
which performs global reasoning to explicitly emphasize
scene context and motion dependencies for flow estimation.
The key idea is adaptive graph reasoning, which intends
to fast enhance the feature representation of motion nodes
conditioned on the global context with shape and boundary.
Comprehensive experiments demonstrate that our AGFlow
is effective and flexible to alleviate the matching ambigui-
ties in challenging scenes, and sets new records in two stan-
dard flow benchmarks. We hope our work will offer a fresh
perspective in re-thinking the design of optical flow models.
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cas/Kanade meets Horn/Schunck: combining local and
global optic flow methods. IJCV, 61: 211–231.
Butler, D.; Wulff, J.; Stanley, G.; and Black, M. 2012. A
Naturalistic Open Source Movie for Optical Flow Evalua-
tion. In ECCV.
Chen, Z.; Zhou, Z.; Huang, J.; Zhang, P.; and Li, B. 2020.
Frame-guided region-aligned representation for video per-
son re-identification. In AAAI.
Dosovitskiy, A.; Fischer, P.; Ilg, E.; Häusser, P.; Hazirbas,
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drulis, J.; Brock, A.; Güssefeld, B.; Rahimimoghaddam, M.;
Hofmann, S.; Brenner, C.; and Jähne, B. 2016. The HCI
Benchmark Suite: Stereo and Flow Ground Truth with Un-
certainties for Urban Autonomous Driving. In CVPRW.
Li, Y.; and Gupta, A. 2018. Beyond Grids: Learning Graph
Representations for Visual Recognition. In NeurIPS.

Luo, A.; Li, X.; Yang, F.; Jiao, Z.; Cheng, H.; and Lyu, S.
2020. Cascade graph neural networks for rgb-d salient ob-
ject detection. In ECCV.
Luo, A.; Yang, F.; Li, X.; Li, Y.; Jiao, Z.; Cheng, H.; and
Lyu, S. 2021. Robust Scene Parsing by Mining Support-
ive Knowledge From Dataset. IEEE Transactions on Neural
Networks and Learning Systems.
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