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Abstract—Homography estimation is a basic image alignment method in many applications. It is usually done by extracting and
matching sparse feature points, which are error-prone in low-light and low-texture images. On the other hand, previous deep homography
approaches use either synthetic images for supervised learning or aerial images for unsupervised learning, both ignoring the importance
of handling depth disparities and moving objects in real-world applications. To overcome these problems, in this work, we propose an
unsupervised deep homography method with a new architecture design. In the spirit of the RANSAC procedure in traditional methods, we
specifically learn an outlier mask to only select reliable regions for homography estimation. We calculate loss with respect to our learned
deep features instead of directly comparing image content as did previously. To achieve the unsupervised training, we also formulate a
novel triplet loss customized for our network. We verify our method by conducting comprehensive comparisons on a new dataset that
covers a wide range of scenes with varying degrees of difficulties for the task. Experimental results reveal that our method outperforms
the state-of-the-art, including deep solutions and feature-based solutions.

Index Terms—Homography, deep homography, image alignment, RANSAC

1 INTRODUCTION

HOMOGRAPHY is the foundation of stereo vision [1]. It can
align images taken from different perspectives if they
approximately undergo a rotational motion or the scene is
close to a planar surface. For scenes that satisfy the con-
straints, a homography can align them directly. For scenes
that violate the constraints, e.g., a scene that consists of multi-
ple planes or contains moving objects, homography usually
serves as an initial alignment model before more advanced
models such as mesh flow [2] and optical flow [3]. Most of
the time, such a pre-alignment is crucial for the final quality.
As a result, the homography has been widely applied in
vision tasks such as multi-frame high dynamic ranging
(HDR) imaging [4], multi-frame image super resolution [5],
burst image denoising [6], video stabilization [7], image/
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video stitching [8], [9], SLAM [10], [11], augmented real-
ity [12] and camera calibration [13].

Homography estimation by traditional approaches gen-
erally requires matched image feature points such as
SIFT [14]. Specifically, after a set of feature correspondences
are obtained, a homography matrix is estimated by Direct
Linear Transformation (DLT) [1] with RANSAC outlier
rejection [16]. Feature-based methods commonly could
achieve good performance while they highly rely on the
quality of image features. Estimation could be inaccurate
due to the insufficient number of matched points or poor
distribution of the features, which is a common case due to
the existence of textureless regions (e.g., blue sky and white
wall), repetitive patterns or illumination variations. More-
over, the rejection of outlier points, e.g., point matches that
are located on the non-dominant planes or dynamic objects,
is also important for the high-quality result. Consequently,
feature-based traditional homography estimation is usually
a challenging task for the non-regular scenes as above.

Due to the development of deep neural networks (DNN) in
recent years, DNN-based solutions to homography estimation
are gradually proposed, such as supervised [17] and unsuper-
vised [15] ones. For the former solution, it requires homogra-
phy as ground truth (GT) to supervise the training so that only
synthetic target images warped by the GT homography could
be generated. Although the synthetic image pairs can be pro-
duced on an arbitrary scale, they are far from real cases because
real depth disparities are unavailable in the training data. As
such, this method suffers from bad generalization to real
images. To tackle this issue, Nguyen et al. proposed the latter
unsupervised solution [15], which minimizes the photometric
loss on real image pairs. However, this method has two main
problems. One is that the loss calculated with respect to image
intensity is less effective than that in the feature space, and the
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Fig. 1. Our deep homography estimation on challenging cases, compared with one traditional feature-based, i.e., SIFT [14] + RANSAC and one
unsupervised DNN-based method [15]. (a) An example with dynamic foreground. (b) A low texture example. (c) A low light example. We mix the blue
and green channels of the warped image and the red channel of the target image to obtain the visualization results as above, where the misaligned
pixels appear as red or green ghosts. The same visualization method is applied for the rest of this paper.

loss is calculated uniformly in the entire image ignoring the
RANSAC-like process. As a result, this method cannot exclude
the moving or non-planar objects from the final loss, so as to
potentially decrease the estimation accuracy. To avoid the
above phenomenons, Nguyen et al. [15] has to work on aerial
images that are far away from the camera to minimize the
influence of depth variations of parallax.

To tackle the aforementioned issues, we propose an unsu-
pervised solution to homography estimation by a new architec-
ture with content-awareness learning. It is specially designed
for image pairs with a small baseline, as this case is commonly
applicable for consecutive video frames, burst image capturing
or photos captured by a dual-camera cellphone. In particular,
to robustly optimize homography, our network implicitly
learns a deep feature for alignment and a content-aware mask
to reject outlier regions simultaneously. The learned feature is
used for loss calculation instead of using photometric loss as
in [17], and learning the content-aware mask actually acts as a
neural RANSAC to mimic the traditional RANSAC procedure.
We further formulate a novel triplet loss to optimize the net-
work so that the unsupervised learning could be achieved.

Experimental results demonstrate the effectiveness of all the
newly involved techniques for our network. The qualitative
and quantitative evaluations also show that our network out-
performs the state-of-the-art (SOTA) as shown in Figs. 1, 8
and 9 for homography estimation task. We also introduce a
comprehensive image pair dataset,' which has been divided
into 5 categories of scenes and contains human-labeled GT
point correspondences for quantitative evaluations of its vali-
dation set (Fig. 7).

1. https:/ / github.com/JirongZhang/DeepHomography

In addition, with the proposed unsupervised homogra-
phy pipeline, we show that it is possible to be extended for
mesh-based registrations, which we call Deep Meshflow.
On the one hand, our deep mesh-based registration shares
the advantages of our deep homography framework. On
the other hand, it can deliver flexibilities for alignments of
scenes with large depth variations that are beyond the capa-
bility of a single homography. We show that our Deep
Meshflow solution outperforms the mesh-based state-of-
the-arts. To summarize, our main contributions are:

e A novel network structure that enables content-
aware robust homography estimation from two
images with small baseline.

e A triplet loss designed for unsupervised training, so
that an optimal homography could be produced as an
output, together with a deep feature map for align-
ment and a mask highlighting the alignment inliers
being implicitly learned as intermediate results.

e A comprehensive dataset covers various scenes for
unsupervised training of image alignment models,
including but not limited to homography, mesh
warps or optical flow.

2 RELATED WORK

Traditional Homography. A homography is a 3 x 3 matrix that
compensates plane motions between two images. It consists
of 8 ° of freedom (DOF), with each 2 for scale, translation,
rotation and perspective [1] respectively. To solve a homog-
raphy, traditional approaches often detect and match image
features, such as classic SIFT [14], SURF [18], ORB [19] and
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neural network pipeline LIFT [20]. Two sets of correspond-
ences were established between two images, following
which robust estimation is adopted, such as the classic
RANSAC [16], IRLS [21] and recent MAGSAC [22] that no
longer requires a user-defined inlier-outlier threshold, for
the outlier rejection during the model estimation.

A homography can also be solved directly without
image features. The direct methods, such as the seminal
Lucas-Kanade algorithm [23], calculate the sum of squared
differences (SSD) between pixels from two images. The
differences guide the shift and warp of the images, yielding
homography updates. A randomly initialized homography is
optimized in this way iteratively [24]. Moreover, the SSD can
be replaced with an enhanced correlation coefficient (ECC)
for the robustness [25].

Deep Homography. Following the success of various deep
image alignment methods such as optical flow [3], [26],
dense matching [27], learned descriptors [28] and deep fea-
tures [29], a deep homography solution was first proposed
by [17] in 2016. The network takes source and target images
as input and produces 4 corner displacement vectors, so as
to generate the homography. It used GT homography to
supervise the training. However, the training images with
GT homography are generated from a single image without
depth disparities. Recently, Le et al. [30] proposed another
supervised homography network with emphasis on the
dynamic contents. It further estimated a dynamic mask dur-
ing homography regression supervised by GT dynamic
masks calculated from optical flows. Similarly, this approach
also suffers from the depth disparity problem as it generates
GT homography similar to [17]. Note that, as [30] is not
open-sourced, in the experiments, we mainly compare
with [17] for the supervised homography.

To overcome the limitation of supervised homography,
Nguyen et al. [15] proposed an unsupervised approach that
computed photometric loss between two images and
adopted Spatial Transform Network (STN) [31] for image
warping. As mentioned above, loss defined on intensity
instead of feature space may mislead the alignment evalua-
tion, and the loss is calculated uniformly on the image plane
so that the outlier regions contribute the same as the inliers,
so as to introduce error when optimizing the homography.

Mesh Warping. To solve the depth parallax issue, mesh-
based image warping is often adopted. Liu et al. proposed
Content Preserving Warp (CPW) to encourage mesh cells to
undergo a rigid motion [32]. Li ef al. proposed a duel-feature
warping by considering not only image features but also
line segments for the warping in low-textured regions [33].
Lin et al. incorporated a curve preserving term to preserve
curve structures [34]. Liu et al. introduced Meshflow, a non-
parametric warping method for video stabilization [2], in
which a sparse motion field with motions only located at
mesh vertexes was estimated. In this work, we extend our
unsupervised deep homography pipeline to support mesh-
based registration, namely Deep Meshflow, with largely
improved robustness against scenes that suffer from feature
detection and matching problems.

Image Stitching. Image stitching methods [8], [35] are
mainly traditional methods that focus on stitching images
under large baselines [36] for the purpose of constructing
the panorama [37]. The stitched images were often captured
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with dramatic viewpoint differences. In this work, we focus
on images with small baselines for the purpose of multi-
frame applications.

Weakly-Supervised Semantic Alignment. Our method is also
related to weakly-supervised semantic alignment, which esti-
mates dense correspondences between different objects
belonging to the same category. SCNet [38] proposed to learn
semantic correspondence using object-proposal level labels.
WeakAlign [39] proposed to learn deep descriptor and align-
ment model by maximizing the soft-inlier count of a 4D dense
correlation computed from high-level features extracted by
ResNet-101 backbone. Following WeakAlign, RTNs [40] esti-
mated geometric field in a recurrent manner based on a con-
straint 4D correlation volume. Different from these semantic
alignment methods, our method is specially designed for
low-level image alignment, e.g., homography estimation.

3 ALGORITHM

3.1 Network Structure

Our method is built upon convolutional neural networks. It
takes two grayscale image patches I, and I, as input, and
produces a homography matrix H,;, from I, to I as output.
The entire structure could be divided into three modules: a
feature extractor f(-), a mask predictor m(-) and a homogra-
phy estimator A(-). f(-) and m(-) are fully convolutional net-
works which accepts input of arbitrary sizes, and the h(-)
utilizes a backbone of ResNet-34 [41] and produces 8 values.
Fig. 2a illustrates the network structure.

3.1.1 Feature Extractor

Unlike previous DNN based methods that directly utilize
the pixel intensity values as the feature, here, our network
automatically learns a deep feature from the input for
robust feature alignment. To this end, we build a fully con-
volutional network (FCN) that takes an input of size H x
W x 1, and produces a feature map of size H x W x C'. For
inputs I, and I, the feature extractor shares weights and
produces feature maps F, and £, i.e.,

Fﬂ = f(Iﬂ)7 B e {av b} (@)

The learned feature usually has more robust properties than
pixel intensity when applied to loss calculation. Especially
for the images with luminance change, the learned feature
is pretty robust to overcome it compared with the pixel
intensity values. See Section 4.3 and Fig. 3 for a detailed ver-
ification of the effectiveness of this module.

3.1.2 Mask Predictor

In non-planar scenes, especially those including moving
objects, there exists no single homography that can align the
two views. In traditional algorithms, RANSAC is widely
applied to find the inliers for homography estimation, so as
to solve the most approximate matrix for the scene align-
ment. Following the similar idea, we propose to build a sub-
network to automatically learn the inliers’ positions. Specifi-
cally, a sub-network m(-) learns to produce an inlier proba-
bility map or mask, highlighting the content in the feature
maps that contribute much to the homography estimation.
The size of the mask is the same as the size of the feature maps
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Fig. 2. The overall structure of our deep homography estimation network (a) and the triplet loss we design to train the network (b). In (a), two input
patches I, and I, are fed into two branches consisting of feature extractor f(-) and mask predictor m(-) respectively, generating features F,, F, and
masks M,, M,. Then the features and masks are fed into a homography estimator to produce 8 values of the homography matrix H,. In h(-), convo-
lution blocks in various colors differ in the number of channels (detailed in Table 1). To train the network in (a), we design a triplet loss composed of

L,, L as defined in Egs. (4), (5) and (6).
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Fig. 3. Ablation study on the effectiveness of our feature extractor, demonstrated by examples with illuminance change, displayed separately in the
left and right two columns. For each example, the input and target GT images are in Row 1, followed by the results by disabling the feature extractor
f(-) (Row 2) and by ours (Row 3), including the learned masks and the aligned results in odd and even columns. As seen, our results are obviously

stable for such a case.

F, and Fj. With the masks, we further weight the features

extracted by f before feeding them to the homography esti-

mator, obtaining two weighted feature maps G, and Gj as,
Mg =m(ly), Gp= FsgMp,

B € {a,b}. (2

As introduced later, the mask learned as above actually
plays two roles in the network: one works as an attention
map, and the other works as a RANSAC-like outlier rejec-
tion scheme. See the details in Sections 3.2, 4.3 and Fig. 4 for
more discussion.

3.1.3 Homography Estimator

Given the weighted feature maps G, and G;, we concate-
nate them to build a feature map [G,, G}] of size H x W x
2 C. Then it is fed to the homography estimator network

and four 2D offset vectors (8 values) are produced. With the
4 offset vectors, it is straightforward to obtain the homogra-
phy matrix H,, with 8 DOF by solving a linear system. We
use h(-) to represent the whole process, i.e.,

Hab = h([Ga; Gb]) (3)
The backbone of h(-) follows a ResNet-34 structure. It contains
34 layers of strided convolutions followed by a global average
pooling layer, which generates fixed size (8 in our case) of fea-
ture vectors regardless of the input feature dimensions.

We list the layer details of the three modules above in
Table 1.

3.2 Triplet Loss for Robust Homography Estimation
With the homography matrix H,; estimated, we warp image
I, to I’ and then further extracts its feature map as F’.
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No Mask Involved

49.951 49.889

RANSAC Only

4.377 1.805

Fig. 4. Row 1 and 2: Our predicted masks for various of scenes. (a) and (b) contains large dynamic foreground. (c) contains few textures and (d) is an
night example. Row 3 and 4: Ablation study on the content-aware mask. We disable both or either role of the mask to compare with ours. Errors are

shown at the bottom for all cases.

TABLE 1
Layer Configurations of Feature Extractor (a), Mask Predictor (b) and Homography Estimator (c)

(a) Feature extractor f(-)

(b) Mask predictor m(-)

Layer No. 1 2 3 Layer No. 1 2 3 4 5
Type conv conv conv Type conv conv conv conv conv
Kernel 3 3 3 Kernel 3 3 3 3 3
Stride 1 1 1 Stride 1 1 1 1 1
Channel 4 8 1 Channel 4 8 16 32 1
(c) Homography estimator h(-)
Layer No. 1 2 3~8 9 10 ~ 16 17 18 ~ 28 29 30 ~ 34 35 36
Type conv pool conv conv conv conv conv conv conv pool fc
Kernel 7 3 3 3 3 3 3 3 3 - -
Stride 2 2 1 2 1 2 1 2 1 1 -
Channel 64 - 64 128 128 256 256 512 512 - 8

In (c), Layer 2 and 35 are max pool and global average pool separately.

Intuitively, if the homography matrix H, is accurate
enough, F, should be well aligned with F}, causing a low [;
loss between them. Considering the real scenes where a sin-
gle homography matrix normally cannot satisfy the trans-
formation between the two views, we also normalize the [;
loss by M/, and M,. Here M is the warped version of M,. So
the loss between the warped I, and I, is as follows,

MM, - ||F. — F||
L I/ 1) = Zz a a 1 4
n( a’ b) ZlM[,le I ( )

where ! = f(I), I, = Warp(I,, Ha) and ¢ indicates a pixel
location in the masks and feature maps. Here we utilize
STN [31] to achieve the warping operation. In order to avoid

the situation when the masks are learned to be all zeros, we
place the sum of the masks in the denominator as an implicit
normalization term. In this way, the loss value may be larger
when there are more zeros in the masks. Therefore, our net-
work tends to predict an inlier mask for the dominant plane
with the largest area so that this normalization term can be
minimized. As shown in Figs. 4a and 4b, the background
objects are marked as the dominant plane by our inlier mask.
On the contrary, in Fig. 5, the foreground is chosen as the
dominant plane by our network to be well aligned while
the background is treated as outliers to be ignored, beca-
use the foreground area is larger than the background.

Note that in Eq. (5), we assume that there is a dominant
plane in the image that is misaligned and needs to be aligned

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 21,2023 at 14:13:18 UTC from IEEE Xplore. Restrictions apply.



Fig. 5. Examples where the foreground object is the dominant plane in an
image. The network treats the foreground dominant plane as the inlier
while backgrounds as the outliers. We show the overlapped input images
in Row 1, the aligned images in Row 2, and the inlier masks in Row 3.

by our network. We do not consider the situation where the
dominant plane in the input image is already aligned because
in most of the cases, the input of a homography estimator is a
pair of misaligned images. Under this condition, we define
Eq. (4) as the main objective term to encourage our network to
align two images in the feature space. However, directly mini-
mizing Eq. (4) may easily cause trivial solutions, where the
feature extractor only produces all zero maps, ie., F, = F, =
0. In this case, the features learned indeed describe the fact
that I and I, are “well aligned,” but it fails to reflect the fact
that the original images I, and I, are mis-aligned. To this end,
we involve another loss between F, and F}, i.e.,

L(la, 1) = ||Fa = Fbl]y, ®)

and further maximize it when minimizing Eq. (4). This strat-
egy avoids the trivial all-zero solutions, and enables the net-
work to learn a discriminative feature map for image
alignment. Although the regularization in Eq. (5) may fail in
some sub regions which are originally aligned in the input
image pair, it performs well to help our network to be opti-
mized globally for predicting a homography matrix to align
the dominant plane in the image. As discussed later in our
ablation study in Section 4.3, our triple loss can improve the
performance by at least 50% lower error on average.

In practise, we swap the features of I, and I, and pro-
duce another homography matrix H,,. Following Eq. (4) we
involve a loss Ly (I}, I,) between the warped I, and I,. We
also add a constraint that enforces H,, and H,, to be inverse.
So, the optimization procedure of the network could be
written as follows,

gljl}}ll LH(I(I;“ Ib) + Ln(Il/)» Ia) - )\L(Ia’ Ib) + /LHHabea - I||§7
(6)

where A and p are balancing hyper-parameters, and 7 is a 3-
order identity matrix. We set A = 2.0 and u = 0.01 in our
experiments. We illustrates the loss formulations in Fig. 2b.
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3.3 Unsupervised Content-Awareness Learning

As mentioned above, our network contains a sub-network
m(-) to predict an inlier probability map or mask. It is
designed that our network can be of content-awareness by
the two-fold roles. First, we use the masks M,, M), to explic-
itly weight the features Fy, F;, so that only highlighted fea-
tures could be fully fed into homography estimator A(-).
The masks actually serve as attention maps for the feature
maps. Second, they are also implicitly involved in the nor-
malized loss Eq. (4), working as a weighting item. By doing
this, only those regions that are really fit for alignment would
be taken into account, just like RANSAC. For those areas con-
taining low texture or dynamic foreground, because they are
non-distinguishable or misleading for alignment, they are
naturally removed for homography estimation during opti-
mizing the triplet loss as proposed. Such a content-aware-
ness is achieved fully by an unsupervised learning scheme,
without any GT mask data as supervision. To demonstrate
the effectiveness of the mask as the two roles, we conduct an
ablation study by disabling the effect of the mask working as
an attention map or as a loss weighting item. As seen in
Table 5, the accuracy has a significant decrease when the
mask is removed in either case.

We also illustrate several examples in Fig. 4 to show the
mask effectiveness. For example, in Figs. 4a and 4b where
the scenes contain dynamic objects, our network success-
fully rejects moving objects, even if the movements are inap-
parent as the fountain in (b), or the objects occupy a large
space as in (a). These cases are very difficult for RANSAC to
find robust inliers. Fig. 4c is a low-textured example, in
which the blue sky occupies half-space of the image. It is
challenging for traditional methods because the sky pro-
vides no enough features. Our predicted mask concentrates
on the horizon and takes advantage of the texture in the sea
waves. Last, Fig. 4d is a low light example, where only visi-
ble areas contain weights as seen. We also illustrate an
example to show the two effects by the mask as separate
roles in the bottom 2 rows of Fig. 4. Details about this abla-
tion study are introduced later in Section 4.3.

We adopt a two-stage strategy to train our network. Spe-
cifically, we first train the network by disabling the attention
map role of the mask, i.e.,, Gg = Fg, B € {a,b}. After about
60 k iterations, we finetune the network by involving the
attention map role of the mask as Eq. (2). We validate this
training strategy by another ablation study detailed in Sec-
tion 4.3, where we train the network totally from scratch.
This two-stage training strategy reduces the error by 4.40%
on average, as shown in Row 11 of Table 5.

3.4 Generalizing to MeshFlow

In practice, a single homograph is usually unable to align
the entire scene as there commonly exists more than one
plane to fit. A workaround is to use a mesh to warp the
scene so that each of the local mesh grids is subject to one
homography, such as MeshFlow [2]. For our network, we
can also make appropriate adjustments to support this kind
of output.

Fig. 6 shows the adjusted network structure for the multi-
ple homography output as stated above. We remove the lin-
ear solver after the last layer of the homography estimator
h(-), and divide it into K branches, each of which connects a
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Fig. 6. The network structure being generalized to MeshFlow, namely

Deep MeshFlow. The hidden part of the network is the same as the one
in Fig. 2.

3-layer convolutional block to produce a tensor M;, of size
(Hop +1) x Wy +1)x2,k=1,2,..,K, where Hy;=
H, - 28K W, = W, g - 2¢-%. Here the tensor M, is actu-
ally a mesh with (H,; + 1) x (W, + 1) vertices, and each
vertex is associated with a 2D displacement vector. Then,
the meshes except the finest one MY, are upsampled to the
same size of M, in order to be further fused together. As
M needs no upsampling, we also write it as My for
convenience.

As for the fusion, we first train a simple segmentation
network s to produce a K-class segmentation map S of size
(Hpx +1) x (W, + 1) x K as follows,

S = s(la; Iy), ()

and then produce the final mesh output M" in the manner
as below,

M (u,v) = M (u,v), ®

where k = argmax;.S(u,v, k) and (u,v) is the vertex coordi-
nate on the mesh. By this strategy, the output mesh flow
conveys homography alignment in various scales for each
local grid. It has enough DoF to align the two views and is
still easy for training.

We set Hyg =Wy =16 and K =3, so the sizes of
meshes {M;} are 2x2x2,5x5x2and 17 x 17 x 2. The
final output mesh M” is also of size 17 x 17 x 2. Using the
displacement information in M", we can obtain 16 x 16
homography {H,;}'**'° by a linear solver as Fig. 6 shows.

As we get the mesh flow M* with a group of homogra-
phy matrices {Hab}wxw, we achieve warping with finer con-
trol. It means the warped I/ in Eq. (4) is calculated with
I' = Warp(I,, M) instead. Meanwhile, the triplet loss is
also slightly modified from Eq. (6) to as follows,

m}r}L La(I), 1) + La(1}, 1) — AL(1,, )
+u Z [|Hap(w, v)Hpa (u, v) — Z| |§ 9)
(wv)

We call this adjusted version of network “Deep MeshFlow,”
which is supposed to be of stronger capability for alignment
compared with a single homography. Note that, as this is
the extension of our Deep Homography baseline, we will
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first reveal the Deep Homography over the previous meth-
ods, then present some comparisons regarding Deep Mesh-
Flow. However, the emphasis will be given to the Deep
Homography.

4 EXPERIMENTAL RESULTS

4.1 Dataset and Implementation Details

Dataset. Previously, there is no dedicated dataset designed
to evaluate the performance of homography fitting. The
supervised method [17] synthesized homographies from a
single image, so it cannot reflect disparities and occlusions.
The unsupervised method [15] adopted aerial images that
lack the generalization ability. Therefore, we propose our
dataset for comprehensive evaluations.

Our dataset contains 5 categories, including regular (RE),
low-texture (LT), low-light (LL), small-foregrounds (SF),
and large-foregrounds (LF) image pairs. Each category con-
tains around 16 k image pairs, thus totally 80 k image pairs
in the dataset, as shown in Fig. 7. The category partition is
based on the understanding of traditional homography reg-
istration. For regular examples (Fig. 7 RE), image features
can be extracted easily due to rich textures and the scene is
flat which is friendly for homography estimation. For low-
texture and low-light examples (Fig. 7 LT, LL), only a few
image features could be extracted, which causes troubles
for traditional homography fitting. For scenes containing
foreground or contain dynamic objects (Fig. 7 SF), the scene
structure is no longer a plane. In such cases, a best fitting
homography would align the most dominant planar struc-
ture of the scene, while other non-planar objects are
excluded. This can be achieved by RANSAC outlier rejec-
tion for traditional methods, but may cause troubles for the
previous two deep methods [15], [17] which treat the image
content equally. The most challenging case is the scene with
large foreground (Fig. 7 LF), for which even the RANSAC
cannot handle it easily. Experimental results demonstrate
our method is robust overall categories as seen in Figs. 1, 8,9
and the supplementary materials, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2022.3174130.

With respect to the testing data, we randomly choose
4.2 k image pairs from all categories. For each pair, we man-
ually marked 6 ~ 10 equally distributed matching points
for the purpose of quantitative comparisons, as illustrated
in Fig. 7. Note that these labeled point pairs may locate in
either the dominant plane or non-dominant plane in the
image. For the homography estimation evaluation, we man-
ually select 6 point pairs in the dominating plane, and for
the mesh-based registration evaluation, we employ all of
the labeled point pairs.

Implementation Details. Our network is trained with 120 &
iterations by an Adam optimizer [42], with parameters
being set as [, =1.0x10"%, B, =09, B,=0.999, =
1.0 x 1078, The batch size is 64, and for every 12 kiterations,
the learning rate /, is reduced by 20%. Each iteration costs
about 1.2 s and it takes nearly 40 hours to complete the
entire training. The implementation is based on PyTorch
and the network training is performed on 4 NVIDIA RTX
2080 Ti. To augment the training data and avoid black
boundaries appearing in the warped image, we randomly
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Fig. 7. A glance of our dataset. For left 6 columns, from top to bottom: regular (RE), low texture (LT), low light (LL) examples, examples of small fore-
ground (SF) and large foreground (LF). The rightmost column shows two examples of human labeled point correspondences for quantitative

evaluation.

crop patches of size 315 x 560 from the original image to
form I, and I;. Code will be released upon the acceptance
of this paper.

Evaluation Metric. For quantitative comparison on our
test dataset, we use the average point distance error as the
evaluation metric. For each test sample, we first use the esti-
mated homography matrix to warp the labeled points in I,
and then compute an average distance error between the
warped points and the labeled points in I;

1 N i 7
error = NZ |lp}, — Warp(p,, Hav) ||, (10)

where N is the number of the labeled points for the test
sample, 7 is the index of the labeled point pair. Note that we
use the labeled point pairs on the dominant plane to evalu-
ate the performance of homography estimation. For mesh-
based registration, which can align multiple planes in the
image, we use all the labeled point pairs for evaluations.

4.2 Comparisons With Existing Methods
4.2.1 Qualitative Comparison

We first compare our method with the existing two deep
homography ones, i.e., the supervised [17] and the unsuper-
vised [15] approaches, as illustrated in Fig. 8.

Fig. 8a shows an synthesized example with no disparities.
In this case, the supervised solution [17] performs well
enough as ours. However, it fails in the case that real consecu-
tive frames of the same footage are applied (Fig. 8b), because
it is unable to handle large disparities and moving objects of
the scene. Fig. 8c shows an example that contains a dominant
planar building surface, where all methods work well. How-
ever, if the image pair involves illumination variation caused
by camera flash, the unsupervised method [15] fails due to its
alignment metric being pixel intensity value difference
instead of semantic feature difference, as seen in Fig. 8d.
Figs. 8e and 8f contain near-range objects and two dominant

planes with moving objects at corners respectively, and
Figs. 8g and 8h are low texture and low light examples sepa-
rately. Similarly, in all of these scenarios, our method produ-
ces warped images with more pixels aligned, so as to
obviously outperform the other two DNN-based ones.

We also compare our method with some feature-based
solutions. Specially, we choose SIFT [14], ORB [19], LIFT [20]
and SOSNet [28] as the feature descriptors and choose RAN-
SAC [16] and MAGSAC [22] as the outlier rejection algo-
rithms, obtaining 8 combinations. We show 3 examples in
Fig. 9, where (a) and (b) show the 8 combinations produce
reasonable but low quality results, and (c) shows one that
most of them fail thoroughly. Note that this kind of failure
case caused by low texture or low light condition frequently
exists for our dataset, and it may lead to unstable results in
real applications such as multi-frame image fusion. In com-
parison, our method is robust enough for these challenging
cases.

4.2.2 Quantitative Comparison

We further demonstrate the performance of our method by
comparing it with all of the other methods quantitatively.
The comparison is based on our dataset and the average I,
distances between the warped points and the human-labeled
GT points are evaluated as the error metric. We report the
errors for each category and the overall averaged error in
Table 2, where 73,3 refers to a 3 x 3 identity matrix as a “no-
warping” homography for reference. As seen, our method
outperforms the others for all categories, except for regular
(RE) scenes if compared with feature-based methods. This
result is reasonable because in RE scenes, rich texture deliv-
ers sufficient high-quality features so that it is naturally
friendly for the feature-based solutions. Even though, our
error is only 5.85% higher than the best solution in this case,
i.e., SIFT [14] + MAGSAC [22]. For the rest scenes, our
method consistently beats the others, especially for the low
texture (LT) and low light (LL) scenes, where our error is
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Fig. 8. Comparison with existing DNN-based approaches. Column 1 shows the input and GT target images, columns 2 to 4 are results by the super-
vised [17], the unsupervised [15] and our method. The errors by all the DNN-based methods are displayed by a bar chart at the bottom.

lower than the 2nd best by 25.78% and 7.62% respectively. cannot well handle the LT and LL scenes, where its errors are
For the scenes containing small (SF) and large (LF) fore- higher than the 2nd best by 100.78% and 109.05% separately.
ground, although the 2nd best method SOSNet [28] + MAG- It is worth noting that the two solutions involving LIFT [20]

SAC [22] only loses to ours very slightly (0.57% and 2.82%),it _ feature dproduce rather stable results for all scenes, but their
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Fig. 9. Comparison with 8 feature-based solutions on 3 examples, shown in (a)(d), (b)(e) and (c)(f). For the first 2 examples, our method produces
more accurate results, while for the last one but not the least, most of the feature-based solutions fail extremely, which is a frequent phenomenon for
the low texture or low light scenes. We also display the errors by all the methods in the bar chart at the bottom right corner.

TABLE 2
Quantitative Comparison Between Ours and all Other Methods Including DNN-Based (Row 3, 4)
and Feature-Based (Row 5 ~ 12) ones

1) RE LT LL SF LF Avg
2)  Tsxs 7.88 (+360.82%)  8.07 (+215.23%) V.41 (+252.86%)  8.11 (+360.80%)  4.29 (+142.37%)  7.15 (+245.41%)
3)  Supervised [17] 712 (+316.37%)  7.53 (+194.14%)  6.86 (+226.67%)  7.83 (+344.89%)  4.46 (+151.98%)  6.76 (+226.57%)
4)  Unsupervised [15] 1.88 (+9.94%) 3.21 (+25.39%) 2.27 (+8.10%) 1.93 (+9.66%) 1.97 (+11.30%) 2.25 (+8.70%)
5)  SIFT [14] + RANSAC [16] 1.72 (+0.58%) 2.56 (+0.00%) 4.97 (+136.67%) 1.82 (+3.41%) 1.84 (+3.95%) 2.58 (+24.64%)
6)  SIFT [14] + MAGSAC [22] 1.71 (+0.00%) 3.15 (+23.05%) 491 (+133.81%) 1.88 (+6.82%) 1.79 (+1.13%) 3.20 (+54.59%)
7)  ORB [19] + RANSAC [16] 1.85 (+8.19%) 3.76 (+46.88%) 2.56 (+21.90%) 2.00 (+13.64%) 2.29 (+29.38%) 2.49 (+20.29%)
8) ORB [19] + MAGSAC [22] 2.02 (+18.13%) 5.18 (+102.34%) 2.78 (+32.38%) 1.92 (+9.09%) 2.25 (+27.12%) 2.83 (+36.71%)
9)  LIFT [20] + RANSAC [16] 1.76 (+2.92%) 3.04 (+18.75%) 2.14 (+1.90%) 1.82 (+3.41%) 1.92 (+8.47%) 2.14 (+3.38%)
10)  LIFT [20] + MAGSAC [22] 1.73 (+1.17%) 2.92 (+14.06%) 2.10 (+0.00%) 1.79 (+1.70%) 1.79 (+1.13%) 2.07 (+0.00%)
11)  SOSNet [28] + RANSAC [16] 1.72 (+0.58%) 3.70 (+44.53%) 4.58 (+118.09%) 1.84 (+4.54%) 1.83 (+3.39%) 2.73 (+31.88%)
12)  SOSNet [28] + MAGSAC [22] 1.73 (+1.17%) 5.14 (+100.78%)  4.39 (+109.05%) 1.76 (+0.00%) 1.77 (+0.00%) 2.99 (+44.44%)

1

W

) Ours 1.81 (+5.85%) 1.90 (-25.78%)

1.94 (-7.62%) 1.75 (-0.57%) 1.72 (-2.82%) 1.82 (-12.08%)

For each scene category, we mark the best solution in bold and red. For the scenes ours beats all the others, we mark the 2nd best solution in blue.

average errors are higher than ours by at least 12.08%. As for
the DNN-based solutions, the supervised method [17] suf-
fers severely from the generalization problem as demon-
strated by its errors being higher than us by at least 142.37%
for all scenes, and the unsupervised method [15] also appar-
ently fails in the LT scene, causing over 50% higher error
than ours in this case. Please see Table 2 and the bar charts in
Figs. 8 and 9 for the detailed quantitative comparisons.

We also compare our method with other methods on the
HPatches benchmark [48]. Since our method is limited to be

applied to large baseline scenes (discussed later in Sec-
tion 4.6), We only evaluate our method on the illumination
change scenes in HPatches benchmark. We train the pro-
posed network on our training data set and images from
HPatches benchmark are kept unseen by our network. The
experiment results are shown in Table 3. The evaluation
metric is the percentage of the estimated homographies
whose average corner error distance is less than e =1,3,5
pixels. The supervision type and run time of each method
are also reported in Table 3. As can be seen, our method is
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TABLE 3
Quantitative Comparison Between Our Method and Other
Methods on the lllumination Change Scenes
in HPatches Benchmark [48]
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TABLE 4
Quantitative Comparison Between Our Method and Semantic
Alignment Methods Including RTNs [40] (Row 2)
and WeakAlign [39] (Row 3)

Accuracy

Method =1 c—3 c—5 ‘ Sup ‘ Time (s)
1)  SuperPoint [43] + NN [44] 0.57 0.92 0.97 Full 0.12
2)  D2Net [45] + NN 0.65 0.95 0.98 Full 1.61
3) R2D2[46] + NN 0.63 0.93 0.98 Full 2.34
4)  SuperPoint + CAPS [47] + NN 0.62 0.93 0.98 Full 0.36
5)  SIFT+CAPS [47]+NN 0.48 0.89 0.95 Weak 0.73
6) SIFT + RANSAC 0.45 0.64 0.68 - 0.43
7)  Ours 0.56 0.92 0.95 Unsup | 0.03

The evaluation metric is the percentage of correctly estimated homographies
with average corner error distance that belows to € = 1,3, 5 pixels. The last
two column are the supervision type and the running time of each method.

comparable with the full-supervised methods and even out-
performs the weakly supervised method. Meanwhile, the
inference speed of our method is faster than other methods
because our method is an end-to-end deep network without
explicit feature detection and matching.

In Table 4, we compare our method with semantic align-
ment methods such as AWeakAlign [39] and RTNs [40]. As
a result, our method outperforms these semantic alignment
methods by a relatively large margin. This is because these
semantic alignment methods are mainly designed to align
two images at the semantic level by learning high-level
descriptors, which is not suitable for low-level image align-
ment. In Table 4 Row 4, we also finetune WeakAlign under
our training data set. The result is even worse after finetun-
ing, which also demonstrates that the high-level alignment
method is not suitable for low-level image alignment task.
In Table 4 Row 5, We train our network using the inlier
masks computed by WeakAlign, in which the inlier masks
are calculated by comparing the distance between the
warped target coordinate and the source coordinate. Com-
paring Row 5 and 6 in Table 4, we can find that our learned
inlier masks perform better than the inlier masks produced
by WeakAlign. A possible reason is that adjacent pixels in
an image are generally similar, especially for flat areas, the
inlier mask of WeakAlign may lead to local optimum in our
learning process.

4.3 Ablation Studies
Context-Aware Mask. As mentioned in Section 3.3, the con-
tent-aware mask takes effects in two folds, working as an

1) | RE LT LL SF LF | Avg
2)  RTNs [40] | 299 3.73 3.19 2.98 297 | 317
3)  WeakAlign [39] | 684 10.15 6.64 7.53 849 | 793
4)  WeakAlign [39]-finetune | 933 11.85 7.95 9.00 1161 | 9.95
5)  Ours - Mask as WeakAlign ‘ 2.52 3.61 3.01 3.57 2.08 ‘ 2.96
6) Ours ‘ 1.81 1.90 1.94 1.75 1.72 ‘ 1.82

In Row 4, we finetuned WeakAlign under our dataset for the fairness. In Row 5,
we train our network using the inlier masks generation method as in Weak Align.

attention for the feature map, or as a weighting map to reject
the outliers like RANSAC. We verify its effectiveness by
evaluating the performance in the case of disabling both or
either effect and report the errors in Row 2, 3, 4 of Table 5.
Specifically, for Row 3 “Mask as attention only” Eq. (4) is
modified as Ln(I],I;) = L(I,, I;) = ||F, — F}||;- On the con-
trary, for Row 4 “Mask as RANSAC only” Eq. (2) is modi-
fied as Gg = Fg, B € {a,b}. As the errors indicate, for most
scenes the mask takes effect increasingly by the two roles,
except for the scenes LT and LF where disabling one role
only may cause the worst result. We also illustrate one
example in Row 3, 4 of Fig. 4, where in the case of “Mask as
attention only” the mask learns to highlight the most attrac-
tive edges or texture regions without rejecting the other
regions (Column 2). On the contrary, in the case of “Mask as
RANSAC only,” the mask learns to highlight only sparse
texture regions (Column 3) as inliers for alignment. In con-
trast, our method balances the two effects and learns a com-
prehensive and informative weighting map, as shown in
Column 4. In Table 5 Row 5, we also train our network with
an explicit term to regularize the mask not to be all zeros.
Compared with the implicit normalization term in Eq. (4),
this explicit term is modified as Ln(Z},I;) = >, M| M, -

||F! — Fyl|, + e 22 MM A a result, our implicit regulariza-
tion term performs better than the explicit term.

Feature Extractor. We also disable the feature extractor to
verify its effectiveness. In this experiment, we set Fj =
Ig, B € {a,b} so that the loss is evaluated on pixel intensity
values instead. In this case, the network loses some robust-
ness, especially if applied to images with luminance
change, as Fig. 3 shows. As seen, if the feature extractor is
disabled, the masks would be abnormally sparse because

TABLE 5
Ablation Studies on Mask (Rows 2 ~ 5), Triplet Loss (Row 6), Feature Extractor (Row 7),
Backbones (Rows 8 ~ 10) and Training Strategy (Row 11)

1) RE LT LL SF LF Avg
2)  No mask involved 2.10 (+16.02%) 2,51 (+32.11%) 2.48 (+27.84%) 3.02 (+72.57%) 1.78 (+3.49%) 2.38 (+30.77%)
3)  Mask as attention only 1.85 (+2.21%) 3.37 (+77.37%) 2.16 (+11.34%) 2.29 (+30.86%) 1.75 (+1.74%) 2.27 (+24.73%)

4)  Mask as RANSAC only
5)  Mask explicit term

1.85 (+2.21%)
1.82 (+0.55%)

2.16 (+13.68%)
2.00 (+5.26%)

2.17 (+11.86%)
1.98 (+2.06%)

2.04 (+16.57%)
1.77 (+1.72%)

2.16 (+25.58%)
1.74 (+1.16%)

2.07 (+13.74%)
1.86 (+2.20%)

6) w/o. Triple loss 2.16 (+19.34%) 4.15 (+118.42%)

3.30 (+70.10%) 2.49 (+42.29%) 2.09 (+21.51%) 2.84 (+56.04%)

7)  w/o. Feature extractor 1.89 (+4.42%) 2.54 (+33.68%)

2.13 (+9.79%) 1.80 (+2.86%) 1.79 (+4.07%) 2.03 (+11.54%)

8) VGG [49]
8) ResNet-18 [41]

1.91 (+5.52%) 2.89 (+52.11%)
1.84 (+1.66%) 2.30 (+21.05%)
( )

2.05 (+5.67%)
2.05 (+5.67%)

2.14 (+22.29%)
2.28 (+30.29%)

1.88 (+9.30%)
1.85 (+7.56%)

2.17 (+19.23%)
2.06 (+13.19%)

10)  ShuffleNet-v2 [50] 2.05 (+13.26%) 2.85 (+50.00% 2.61 (+34.54%) 2.72 (+55.43%) 1.99 (+15.70%) 2.44 (+34.07%)
11)  Train from scratch 1.87 (+3.31%) 2.00 (+5.26%) 1.98 (+2.06%) 1.90 (+8.57%) 1.77 (+2.91%) 1.90 (+4.40%)
12) Ours 1.81 1.90 1.94 175 1.72 1.82
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Fig. 10. Results of HDR imaging from Exposure Fusion. Different expo-
sures should be well aligned before the HDR fusion. The second row
shows the fusion results of SIFT+RANSAC while the third row shows the
results aligned by our Deep Homography.

the information from the loss reflects only a small falsely
“aligned” region. Resultantly, the homography fails to be
estimated by misleading information. In comparison, our
results are stable enough thanks to the luminance invari-
ant property of the learned feature. The errors are listed in
Row 7 of Table 5.

Triplet Loss. We further exam the effectiveness of our trip-
let loss by removing the term of Eq. (5) from Eq. (6). As
shown in Table 5 “w/o. triplet loss,” the triplet loss brings us
over 50% lower error, especially is so beneficial in LT
(118.42% lower error) and LL (70.10% lower error) scenes,
demonstrating that it not only avoids the problem of obtain-
ing trivial solutions, but also facilitates a better optimization.

Unsupervised
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Backbone. We also exam several popular backbones,
including VGG [49], ResNet-18 [41], ResNet-34 [41], and Shuf-
fleNet [50] for the homography estimator A(-). As seen in
Rows 8 ~ 10 of Table 5, the ResNet-18 achieves similar perfor-
mance as ours obtained by ResNet-34. The VGG backbone is
slightly worse than ResNet-18 and ResNet-34. Interestingly,
the light-weight backbone ShuffleNet-v2 achieves the perfor-
mance on par with other large backbones, indicating the
potential wide application to portable systems of our method.

Training Strategy. As aforementioned, we use a two-stage
strategy to train the network. To validate this strategy, we
conduct an ablation study here to train the network from
scratch. As Row 11 and 12 of Table 5 reveal, our training
strategy brings a 4.40% lower error on average, demonstrat-
ing its usefulness.

4.4 Applications to HDR Imaging

The HDR imaging technique usually requires the camera to
capture several LDR images under various exposures, and
then fuses them together to generate an image with higher
dynamic range. A critical part of it is how to well align the
multiple LDR images with a solid homography to avoid
ghosting and reduce noise.

To this end, we embed our Deep Homography calcula-
tion step into the pipeline of Exposure Fusion [51], which
requires the input images to be pre-aligned before running
the core HDR fusion steps. If the input images involve an
obvious movement, the alignment quality will directly
determine whether severe ghosting exists in the final out-
put. We compare our method with the classical SIFT +
RANSAC on two low-textured examples shown in Fig. 10.
The first row shows two different exposures, EV+ and EV-,
of the two examples. The results of SIFT + RANSAC are
shown in the second row of Fig. 10, which suffer from obvi-
ous ghosting effects due to the failure of alignments. Our
results are free from such problems.

Fig. 11. Visual comparison with mesh-based approaches. We select three methods, APAP [8], Meshflow [2] and unsupervised deep homography [15],

which are mostly related to our method for comparisons.
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TABLE 6
Quantitative Comparison Between Our Deep Meshflow Method
and all Other Methods Including Traditional Mesh-Based
(Row 3, 4) and Homography-Based (Row 5 ~ 7)

1) | RE LT LL SF LE | Avg
2)  Tsxs | 798 839 761 870 48 | 751
3) APAP[8] 253 345 267 269 255 | 278
4)  Meshflow [2] 173 248 197 206 228 | 210
5)  SIFT + RASAC 173 293 525 200 217 | 281
6) Unsupervised [15] | 194 350 245 227 236 | 251
7)  Ours-Homo 188 236 223 213 213 | 215
8) Ours-Mesh 171 237 193 188 196 | 197

Note that during the evaluation, we use all the labeled point pairs to quantify
the alignment accuracy of multiple planes in the image. As can be seen, our
Deep Meshflow method can produce better results than other methods.

4.5 Mesh-Based Registration

We have extended Deep Homography to Deep Meshflow in
Section 3.4. Here, we compare our mesh-based registration
with several representative methods, including the classical
traditional methods Meshflow [2], As-Projective-As-Possi-
ble mesh Warping [8] and unsupervised deep homogra-
phy [15]. The source image is warped to the target image,
where two images are blended for illustration. Methods
that produces clearer blended images indicate good align-
ment. For each method, we show two examples as shown in
Fig. 11. The first, second, and third row shows the compari-
son with As-Projective-As-Possible(APAP), Meshflow, and
unsupervised deep homography approaches, respectively,
in which our results are shown in the second and fourth col-
umns. We highlight some regions for clearer illustration.
These scenes contain depth variations of multiple planes,
some of which are very close to the camera. As a result, a
single homography is barely qualified. Moreover, some of
the scenes contain repetitive structures that trouble the
image feature matching, limiting the quality of traditional
feature based mesh methods. In comparison, our Deep
Meshflow is robust against these scenarios. In Table 6, we
report the quantitative comparison result of our Deep Mesh-
flow with other methods on our test data set. During the
evaluation, all the labeled point pairs are used to compute
the warping distance error as illustrated in Section 4.1. The
experiment result shows that our Deep Meshflow method
can produce better performance than traditional mesh-
based registration methods and homography-based regis-
tration methods.

4.6 Failure Cases

Although our method achieves state-of-the-art performance
in small baseline scenes compared with the existing meth-
ods, it still has its limitation of being applied to large base-
line scenes. The reason behind may lie in the limited
perception field of the network which is unable to perceive
the alignment information between the two images. With
this limitation, our method is unable to be applied to appli-
cations relying on large baseline alignment such as image
stitching. We show two failure results in Fig. 12 for large
baseline scenes by our method, in comparison with those by
SIFT+RANSAC. As seen, SIFT+RANSAC produces stable
results for the scenes. We will leave the solution for the large
baseline alignment as a future work.
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SIFT + RANSAC

Ours

Fig. 12. Our method may fail when applied to images with large baseline.
Left: images aligned by SIFT + RANSAC induced homography. Right:
aligned by our Deep Homography.

5 CONCLUSION

We have presented a new architecture for unsupervised
deep homography estimation with content-aware capabil-
ity. Traditional feature based methods heavily rely on the
quality of image features which are vulnerable to low-tex-
ture and low-light scenes. Large foreground also causes
troubles for RANSAC outlier removal. Previous DNN-
based solutions pay less attention to the depth disparity
issue, and they treat the image content equally which can be
influenced by non-planar structures or dynamic objects. To
tackle these issues, our network learns a mask during the
estimation to reject outlier regions for robust homography
estimation, acting as a neural RANSAC. We also calculate
loss with respect to learned deep features instead of directly
comparing the image intensities. We further formulate a
novel triplet loss to achieve the unsupervised training of
our network. In addition, based on the proposed homogra-
phy pipeline, we further show that it is possible to be
extended for mesh based registration, by regressing multi-
ple motion vectors at the mesh vertexes, resulting in a Deep
Meshflow motion model.

We have conducted extensive experiments to demonstrate
the effectiveness of the modules in our network and the triplet
loss we designed. Results also reveal the superior capabilities
of our method against the state-of-the-art, including DNN-
based and feature-based solutions, on a newly presented com-
prehensive dataset for image alignment. The dataset is
divided into 5 categories of scenes, which can be used for
future research of image alignment models.
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