
1

ASFlow: Unsupervised Optical Flow Learning with
Adaptive Pyramid Sampling

Shuaicheng Liu, Member, IEEE, Kunming Luo, Ao Luo, Member, IEEE, Chuan Wang, Member, IEEE,
Fanman Meng, Member, IEEE, and Bing Zeng, Fellow, IEEE

Abstract—We present an unsupervised optical flow estimation
method by proposing an adaptive pyramid sampling in the deep
pyramid network. Specifically, in the pyramid downsampling, we
propose a Content-Aware Pooling (CAP) module, which promotes
local feature gathering by avoiding cross region pooling, so that
the learned features become more representative. In the pyramid
upsampling, we propose an Adaptive Flow Upsampling (AFU)
module, where cross edge interpolation can be avoided, producing
sharp motion boundaries. Equipped with these two modules, our
method achieves the best performance for unsupervised optical
flow estimation on multiple leading benchmarks, including MPI-
Sintel, KITTI 2012 and KITTI 2015. Particularly, we achieve
EPE=1.5 on KITTI 2012 and F1=9.67% KITTI 2015, which
outperform the previous state-of-the-art methods by 16.7% and
13.1%, respectively.

Index Terms—Unsupervised Learning, Optical Flow, Pyramid
Upsampling, Pyramid Downsampling.

I. INTRODUCTION

OPTICAL flow estimation is a long-lasting research topic
since proposed by Horn and Schunck [1]. It is a funda-

mental technique for many computer vision applications [2]–[6].
Early methods optimize the pre-defined energy functions with
various assumptions [7]–[9] and constraints [10], [11]. The
learning-based optical flow methods [12]–[14] become more
popular than the traditional variational-based counterparts due
to their leading performances in benchmark evaluations and
real-time inference speed.

The DNN-based methods can be classified into super-
vised [15]–[19] and unsupervised [20]–[24] approaches. The
training of supervised methods requires ground-truth flow
labels, which are hard to obtain. As a result, these models
are primarily trained on large-scale synthetic datasets [15],
[25], because obtaining ground-truth annotations for real-
world scenarios are prohibitively expensive. Consequently, the
supervised methods may suffer from domain transfer problems,
where the synthesized images are different from the real ones.

In unsupervised methods, ground-truth annotations are not
necessary. The photometric loss is optimized by warping one

Manuscript received July 12, 2021; revised October 4, 2021 and November
3, 2021; accepted November 12, 2021. This work was supported in part by the
National Natural Science Foundation of China (NSFC) under Grants 61872067,
62031009, 61871087, and 61720106004. (Corresponding author: Shuaicheng
Liu)

Shuaicheng Liu, Fanman Meng and Bing Zeng are with School of
Information and Communication Engineering, University of Electronic Science
and Technology of China, Chengdu, Sichuan, 611731, China. (e-mail:
liushuaicheng@uestc.edu.cn).

Kunming Luo, Ao Luo, and Chuan Wang are with Megvii Research Chengdu,
Chengdu, Sichuan, 610095, China.

(a) Feature similarity map with and w/o our content-aware pooling (CAP).

(b) An example from Sintel Clean benchmark.

Fig. 1. Some examples from Sintel Clean benchmark. (a) With our proposed
CAP, the learned features are more representative. (b) Compared with
previous unsupervised methods, UFlow [24], SimFlow [27], ARFlow [23],
and SelFlow [28], our approach produces sharper and more accurate results at
motion boundaries.

image to the other with predicted optical flows. Without the
label guidance, occlusions and motion boundaries need special
attention during the unsupervised training process [24], [26].

The pyramid structure is popular in optical flow learning,
where global and local motions can be estimated in a coarse-
to-fine manner. We notice that there are two components that
should be improved in the pyramid structure [18], [19]. One
is related to the pyramid downsampling and the other is the
upsampling.

In the process of pyramid downsampling, the network adopts
striding in convolution (SIC) or the pooling to decrease the
feature sizes. However, the striding or pooling is fixed with
a rectangular size, which may not be optimal for the feature
information gathering. Considering that a rectangle may span
different image regions, where multiple irrelevant values are
forced to gather together, picking one of them may not be
optimal, yielding less representative values. On the other side,
in the pyramid upsampling, the flows are interpolated from
coarse to fine. However, such an interpolation may cross image
edges, resulting in blur effects in the estimated flows. Even
worse, such errors will be propagated and aggregated when
the scale becomes finer.

Based on the above observations, we propose an Adaptive
Pyramid Sampling approach to upgrade the pyramid network
structure, including a Content-Aware Pooling (CAP) module for

2

CAP ConvConvConv CAP Conv

Estimator EstimatorEstimator

AFUAFU

Feature Encoder

Flow Decoder

Adaptive Sub-Net
Adaptive Sampling Maps

Fig. 2. Illustration of our network, where ‘Conv’ represents a convolutional block that contains two convolution layers with kernel size 3 and stride 1,
‘Estimator’ denotes the conventional optical flow estimator, ‘CAP’ is the proposed Content-Aware Pooling module, and ‘AFU’ is the proposed Adaptive Flow
Upsampling module.

the pyramid downsampling and an Adaptive Flow Upsampling
(AFU) module for the pyramid upsampling. The CAP can
automatically group image features, such that similar features
can be gathered locally before the downsampling. With our
CAP, the learned features become more representative, so as
to promote the overall performance. On the other side, the
AFU module interpolates the flows adaptively, where cross-
edge interpolation can be avoided, leading to sharper flows
at motion boundaries. Specifically, in the AFU, we propose a
sampling regularization loss to constrain the learned adaptive
sampling maps, where the upsampled flow fields can better fit
the object boundaries.

Fig. 1 provides some visualization results on Sintel Clean
dataset. Specifically, Fig. 1a shows some feature similarity
maps. We extract features from source and target images.
We choose one feature vector at a position (marked in the
red cross) from the source image and calculate its similarity
with all features at the target image. We plot the similarity
as a heat map, where high similarity values are depicted in
red. As seen, with our CAP, the feature at the ‘red cross’
is quite different from the features at the other places. In
contrast, without our CAP, features at many different places
also have high similarity values. Therefore, our model can learn
more representative features with the proposed content-aware
pooling. Fig. 1b shows our predicted optical flow compared
with other unsupervised methods. As can be seen, with the
help of AFU, the interpolation can produce sharp motion
boundaries. Equipped with CAP and AFU, the classical pyramid
network has been upgraded, producing leading performance
both quantitatively and qualitatively when evaluated on the flow
benchmarks [25], [29], [30]. To sum up, our main contributions
include:
• We propose a Content-Aware Pooling (CAP) module

for the pyramid downsampling. The CAP can assemble
similar features locally, improving the capability of feature
representation substantially.

• We propose an Adaptive Flow Upsampling (AFU) module
for the pyramid upsampling, where the blurs caused by
cross-edge interpolation can be avoided, yielding sharper
motion boundaries.

• We achieve superior performance over the state-of-the-
art unsupervised methods, evaluated on multiple leading
benchmarks.

II. RELATED WORK

A. Supervised Deep Optical Flow
Supervised methods require the annotated ground-truth flow

labels to train the network [17], [31]. FlowNet [15] was first
proposed by training a fully convolutional network on the flying
chairs dataset [15]. FlowNet2 [32] then proposed to improve the
performance by iteratively stacking networks. In order to cover
large displacements, SPyNet [16] proposed to estimate optical
flow based on the coarse-to-fine manner. Then, PWC-Net [18],
[33] designed an efficient pyramid network to learn the motion
from coarse to fine, where cost volumes are calculated after
the feature warping process at each pyramid level. Based on
the PWC-Net structure, IRR-PWC [19] proposed an iterative
residual refinement scheme to make the optical flow estimator
shared across pyramid levels, resulting in an efficient and
lightweight network architecture.

Recently, it is also proved that optical flow estimation can
be improved by extracting better correspondence information.
VCN [34] proposed to build 4D volumetric correspondence
by volumetric encoder-decoder layers, multi-channel cost
volumes and separable volumetric filters. MaskFlowNet [35]
proposed an asymmetric occlusion-aware feature matching
module to filter out useless areas during building the cost
volume. DICL-Flow [36] proposed a displacement-invariant
matching cost to decouple the 2D displacements and learn the
matching costs at each 2D displacement hypothesis indepen-
dently. LiteFlowNet3 [31] proposed a cost volume modulation
module and a flow field deformation module which improved
the performance of optical flow estimation. More recently,
RAFT [12] proposed to build multi-scale 4D correlation volume
for all pairs of pixels and estimate optical flow iteratively using
the recurrent network, yielding state-of-the-art performance
on multiple benchmarks. However, the applications of these
supervised optical flow methods are limited because their
performance depends heavily on the training data, which is
hard to obtain in real applications.

3

Conv(1, 16) Conv(2, 32) Conv(2, 32) Conv(2, 64)

Conv(1, 20)Conv(1, 20)Conv(1, 20)Conv(1, 20)Conv(1, 20)Conv(1, 20)

Conv(2, 64) Conv(2, 96)

Concat

Up

Concat

Up

Concat

Up

Concat

Up

Concat

Up

Adaptive Sampling Maps

Input

Output

Fig. 3. The detailed structure of our Adaptive Sub-Net. It is the input image, U i
t and Gi

t (i ∈ {0, 1, ..., 5}) are adaptive sampling maps. ‘Up’ denotes the
bilinear upsampling operation and ‘Concat’ is the feature concatenate operation. ‘Conv(n,m)’ indicates the typical convolutional layer whose kernel size is
3× 3, stride is n and output channel is m.

B. Unsupervised Deep Optical Flow

Unsupervised methods can learn optical flow networks using
only image sequences. The basic formulation of unsupervised
optical flow learning [37]–[39] is to train networks by minimiz-
ing the photometric loss between two input images: warping
one to the another with predicted flow vectors. In this way,
there is no need for ground-truth optical flow labels. However,
the training becomes more difficult than supervised methods.

One core problem of unsupervised optical flow learning is
the occlusion problem in the photometric loss. UnFlow [20]
proposed to exclude occlusion regions from photometric
loss by bidirectional flow estimation and forward-backward
occlusion check. OAFlow [40] used range-map occlusion
check [41] to handle occlusion. Back2Future [42] proposed to
learn an occlusion estimation network for occlusion handling.
DDFlow [21] and SelFlow [28] proposed to learn optical
flow in occlusion regions by artificially generating occlusions
during the data distillation learning process. STFlow [43]
introduce a self-taught framework that used the traditional
flow interpolation method [44] to improve the self-estimated
flow to provide better pseudo labels for self-supervised training.

Another key point of unsupervised optical flow learning is
how to learn accurate matching information from the image
alignment objective. From this point of view, UnFlow [20]
proposed to use census transform to make the photometric
loss robust for illumination changes. OAFlow [40] proposed to
calculate photometric loss by an enlarged search warping, which
can facilitate the learning of large motion. Back2Future [42]
proposed to improve unsupervised optical flow learning by
multi-frame formulation. EpiFlow [22] introduced the low-rank
constraint and the sub-space constraint into the unsupervised
objective function. Stereo and depth information is also
introduced to improve optical flow learning [45]–[49]. Recently,
NLFlow [50] proposed a CNN-based non-local term to remove
noise and blur around motion boundaries. PatchFlow [51]
proposed to replace pixel-based warping with patch-based
warping to improve the photometric loss. More recently,
ARFlow [23] proposed the augmentation regularization loss
to learn optical flow from self-supervision and augmentations.
SimFlow introduced the deep feature similarity constraint to im-
prove the photometric loss [27]. UFlow [24] proposed to learn

optical flow by a unified framework that systematically analyzes
different existing unsupervised components, which achieved
state-of-the-art performance. Although previous methods have
largely improved the performance of unsupervised optical
flow learning, the downsampling and upsampling problems
in the pyramid process have not been addressed. In this paper,
we propose to use our content-aware pooling (CAP) module
and adaptive flow upsampling (AFU) module to improve
performance.

C. Image-Guided Upsampling

Our method is also related to edge-aware interpolation
and upsampling, such as joint bilateral upsampling [52] and
guided image filtering [53]. These methods introduced the
image content information into the upsampling interpolation
process. However, the image content information may be noisy,
which is harmful to the upsampling results. Apart from the
traditional methods, CNN-based approaches have also been
proposed to extract robust guidance features or guidance filters
for upsampling [54]–[56]. However, learning a CNN-based
upsampling module in the unsupervised setting is difficult
for previous methods, because the guidance information from
unsupervised objective functions is noisy and even unreliable.
In this paper, we propose to learn our AFU module in the
unsupervised setting and compare it with previous components
to demonstrate its effectiveness.

III. ALGORITHM

In this section, we first provide an overview of the network
architecture of our method in Sec. III-A. Then we introduce the
proposed Content-Aware Pooling (CAP) module in Sec. III-B
and Adaptive Flow Upsampling (AFU) module in Sec. III-C.
Finally, we describe the loss functions used for unsupervised
training in Sec. III-D.

A. Network Architecture

The pipeline of the proposed network is illustrated in Fig. 2.
It takes two frames I1 and I2 as inputs and produces an
optical flow field V1 that describes the motion of each pixel
in I1 towards I2. The whole network contains three parts: an
adaptive sub-net, a siamese feature encoder and a flow decoder.

4

Grouping Process

Reshape

Adaptive Gumble
Softmax

Sampling
Probability

Feature Vector

Assigning Process

Fig. 4. Illustration of our Content-Aware Pooling module. The left is the assigning process: for each feature vector in high-resolution feature F i
t , we assign it

to the corresponding neighbor position in low-resolution feature according to its sampling probability kernel gp produced by adaptive gumbel softmax and
reshape operation. The right is the grouping process: we generate the low-resolution feature F̀ i

t by accumulating all the assigning maps F̀ i
t (p), as in Eq. 6.

First, we use the adaptive sub-net to extract multi-scale
adaptive sampling maps, which will be used later in the CAP
module and the AFU module:{

Gi
1, G

i
2, U

i
1

}
= A(I1, I2), i ∈ {0, 1, ..., N} (1)

where A is our adaptive sub-net, i is the index of each scale
and the small number represents the coarse scale, Gi

1, Gi
2 and

U i
1 are adaptive sampling maps. In our implementation, the

adaptive sub-net is designed as a simple U-Net structure, which
is shown in Fig. 3.

Second, in the siamese feature encoder, we extract multi-
scale feature pairs from the input images to cover both global
and local information, which is formulated as:

F̀ i
t = G(F i

t , G
i
t), (2)

F i−1
t = Ci−1(F̀ i

t) (3)

where t ∈ {1, 2} is the index of the input images, G represents
the proposed CAP module, F̀ i

t is the downsampled feature of
F i
t , and Ci is a convolution layer. Note that the architecture

of the siamese feature encoder is the same as IRR-PWC [19],
where 6 convolutional blocks are used to build the feature
pyramid. In each convolutional block, there are only two
convolutional layers: one with stride = 2 to downscale the
feature map and another with stride = 1 to extract high level
information.

After the feature encoding process, we estimate flow fields
by the flow decoder formulated as follows:

V̂ i−1
1 = U(V i−1

1 , U i
1), (4)

V i
1 = D(F i

1, F
i
2, V̂

i−1
1), (5)

where U represents our AFU module, V̂ i−1
1 is the upsampled

flow from i− 1 scale and E is a flow estimator. Specifically,
the flow estimator D is designed following the recent work
UFlow [24], which contains feature warping, correlation layer,

cost volume normalization, a dense convolution block and a
dilated convolution block.

In the feature encoding process, convolution layers with
stride = 2 are used to downscale feature maps. However, the
regular downsampling method based on sliding windows may
fuse features from different objects, reducing the matching
accuracy of pair-wise correlation estimation. To tackle this
issue, we propose a CAP module to automatically group similar
features in the downsampling process, referred to as content-
aware pooling. Besides, we notice that the commonly used
bilinear upsampling may introduce interpolation errors and blur
artifacts during the decoding process. Thus, the AFU module
is proposed to ease this problem by adaptively interpolating
flow fields with learnable weights. The details of these two
modules are presented in Sec. III-B and Sec. III-C.

B. Content-Aware Pooling

As mentioned above, the CAP module is proposed to
automatically group similar features in the pooling process.
The input is a high-resolution feature map F i

t with the size of
H ×W × c, and an adaptive sampling map Gi

t with the size
of H ×W × 10, in which 9 channels are used as sampling
scores G

i

t and the remaining channel is used as the control
parameter τ in our adaptive gumbel softmax. The output is
a downsampled feature map F̀ i

t with size of H
r ×

W
r × c,

where c denotes the channel number and r is the sampling
rate, typically set to 2 in the feature encoding process.

The detailed structure of our CAP is shown in Fig. 4. We
divide the CAP into two processes: the assigning process
and the grouping process. In the assigning process, we first
generate a sampling probability kernel gp from Gi

t(p) using
adaptive gumbel softmax. Given a feature vector F i

t (p) at
spatial position p, the sampling probability kernel gp indicates
the probability of F t

i (p) contributing to the neighboring region
of its corresponding position in the low-resolution feature

5

Fig. 5. The feature matching visualizations of our CAP module vs. conventional striding in convolution. We extract features from the source and the target
images. We pick a feature vector from the source feature map (red cross) and compute cosine differences with other places in the source feature map (SFS),
and with all features at the target feature map (FFS). More details are provided in Fig. 6. Red represents high similarity score and blue represents low similarity
score. Features by SIC are likely to be similar to other places, while features by CAP are only similar to themselves.

Resize&
ConcatEncoder

Self Feature Similarity

Target Image

Resize&
ConcatEncoder Cosine

similarity

Cosine
similarity

Forward Feature Similarity

Source Image

Fig. 6. Illustration of how we compute feature similarity maps for feature matching visualization. We first use the encoder to extract multi-scale feature maps
from the source and target images. Then we resize the multi-scale feature maps into full size and concatenate them together. We select a feature vector in
the source feature map marked by the red cross. The self feature similarity (SFS) and forward feature similarity (FFS) are calculated by computing cosine
similarity between the selected feature vector and all features in the source and target feature map, respectively.

F̀ i
t . Then we compute the assign map F̀ i

t (p) by a multiply
operation to assign the feature vector F i

t (p) to each coordinate
in low resolution according to the sampling probability kernel
gp. Finally, in the grouping process, we generate the low-
resolution feature F̀ i

t by accumulating all the assign maps.
Thus similar feature vectors in high-resolution feature maps
are grouped together according to the sampling probability
kernels. In summary, our CAP module can be formulated as
follows:

F̀ i
t =
∑
p

F i
t (p)

⊗
gp, (6)

where
⊗

is the multiply operation with the broadcasting
mechanism.

During the assigning process, in order to avoid feature
grouping across different regions, we use adaptive gumbel
softmax [57], [58] to suppress small probabilities when produc-
ing sampling probability kernel gp. In previous works, gumbel
softmax is used to produce a sharp and near-differentiable
mapping function with straight-through gradient estimation.

Here, we follow the design in PRNet [58], where a sub-network
is used to predict the temperature of the gumbel softmax
correspondence. We first split the adaptive sampling map Gi

t

as a sampling score G
i

t(j,p) and a control parameter τ(p) to
control the distribution tendency of sampling kernels, where j
is channel index and p is spatial coordinate. Note that when
τ(p) gets smaller, the sampling probability will become sharper.
In summary, the adaptive gumbel softmax can be formulated
as follows:

x(j,p)=
G

i

t(j,p)

sigmoid(τ(p)) + ρ
, (7)

gp(j)=
exp(x(j,p))∑9
k exp(x(k,p))

, (8)

where ρ is a constant to avoid zero denominator and x(j,p)
is the transformed sampling score.

Fig. 5 provides some visualizations of content-aware pooling
results by comparing our CAP module with conventional
striding in convolution (SIC). We train two networks with

6

Reshape

Adaptive Gumble
Softmax

Sampling Probability

Feature Vector

Add

Sampling
Probability

Reshape

0.0 0.2 0.0

0.0 0.5 0.2

0.0 0.1 0.0

Adaptive Gumble
Softmax

Assign

Fig. 7. Illustration of our Adaptive Flow Upsampling module. The flow
vector in high-resolution flow field V i

1 (p) is generated by sampling and fusion
according to its sampling kernel up.

different encoder structures in the same training setting. Then
we visualize the feature similarity results as illustrated in Fig. 6.
We first interpolate pyramid features into the image size and
concatenate them together. Then feature vector in I1 located
by the red cross is selected to calculate cosine similarity with
features of I1 and I2, which is the self feature similarity (SFS)
map and the forward feature similarity (FFS) map, respectively.
The SFS map reveals the discriminative ability of the encoded
features and the FFS map reveals the matching ability between
feature pairs. From Fig. 5, we can see that features extracted
by SIC method are likely to be similar with neighbor objects,
which may produce ambiguity matching information for optical
flow estimation. Unlike the SIC method, our CAP module can
generate features that are only similar to their corresponding
feature vectors.

C. Adaptive Flow Upsampling

The conventional bilinear upsampling method may inter-
polate flow vectors across object boundaries leading to blur
artifacts and errors during the flow decoding process. To solve
this problem, we design an adaptive flow upsampling module
to adaptively interpolate flow fields with learnable weights.
Our motivation is to upsample the flow field using learnable
interpolation weights. In order to avoid interpolation blur that
causes by fusion across edges, we use adaptive gumbel softmax
to make the interpolation weights close to a one-hot distribution
in edge areas. The detail of our AFU module is shown in Fig. 7.

Fig. 8. An example of using our AFU module to upsample optical flow in the
pyramid network. We first downsample the ground-truth optical flow (original
flow) by 64 times, which is the smallest scale of our pyramid network. Then
we upsample the downscaled flow to the original size using our AFU, bilinear
method, guided filter [53] (GF) and the learned convex upsample module [12]
(CUM). Compared with previous methods, our AFU can preserve more object
structure in the upsampling process.

Fig. 9. An example of using our AFU module to upsample images. We first
downsample the original image by 64 times, which is the smallest scale of our
pyramid network. Then we iteratively upsample the downscaled image to the
original size using our AFU, as Eq. 11. Compared with bilinear upsampling,
our AFU upsampling can preserve detail object structures.

Given a low-resolution flow field V i−1
1 of size H

r ×
W
r × 2

and a high-resolution adaptive sampling map U i
1 with size

of H × W × 10, our goal is to produce a high-resolution
flow field V i

1 with size of H × W × 2. We define p as a
spatial coordinate in V i

1 and q ∈ N (p/r) as its corresponding
neighbors in V i−1

1 . The flow vectors in high-resolution flow
field V i

1 can be calculated by the following formulation (the
‘
∑

’ and ‘Assign’ operation in Fig. 7):

V i
1 (p) =

∑
q∈N (p/r)

up(q)V i−1
1 (q), (9)

where up(q) is a sampling probability kernel to indicate
the contribution probability of V i−1

1 (q) to V i
1 (p). Here the

sampling probability kernel up(q) is generated from U i
1 using

adaptive gumbel softmax similar to Eq. 7 and Eq. 8, where
small probabilities are compressed to zeros. Thus the flow
vectors in the high-resolution flow field are generated by
adaptively fusing flow vectors in low-resolution flow field
based on sampling probability kernels. An example of using
our AFU to upsample optical flow is shown in Fig. 8, where
optical flow is first downscaled by 64 times as the smallest scale
in the pyramid network. As can be seen, our AFU can preserve
object structure during the pyramid upsampling process.

D. Unsupervised Losses

In order to train our network in the unsupervised setting
where ground-truth labels are not available, we use a set
of unsupervised losses as our training objective. Our main

7

(a) Qualitative visualization comparison on KITTI 2012 benchmark.

(b) Qualitative visualization comparison on KITTI 2015 benchmark.

Fig. 10. We show qualitative comparison with the previous methods UFlow [24], SimFlow [27], SelFlow [28] and DDFlow [21] on online evaluation
benchmarks, including KITTI 2012 (a) and KITTI 2015 (b). The error maps of the predictions are visualized in the last two columns. In the error maps,
brighter regions indicate the larger estimation errors except that visualized by KITTI 2015 benchmark where correct estimations are displayed in blue and
wrong ones in red.

objective is the photometric loss Ld, which is designed
based on the brightness constancy assumption that the object
appearance should be invariable in input frames. However,
occlusion regions caused by moving objects can not be
optimized by the photometric loss. We explicitly exclude
these regions in the photometric loss by forward-backward
consistency checking [20]. As a result, the photometric loss
Ld is formulated as follows:

Ld =

∑
p Ψ
(
I1(p)− I2

(
p + V1(p)

))
·O1(p)∑

pO1(p)
, (10)

where O1 is the occlusion mask generated by forward-backward
consistency checking. ‘1’ indicates the non-occluded pixel
and ‘0’ means the occluded pixel. Ψ is the robust penalty
function [21]: Ψ(x) = (|x|+ ε)q in which q and ε are set to
0.4 and 0.01.

Following previous works, several loss functions are used
to train our model, including the edge-aware smooth loss Ls

that improves the smoothness of output flow field [40], the
census loss Lc that increases the robustness under illumination
changes [20], the boundary dilated warping loss Lb to learn
motions towards outside the image plane [26], the augmentation
regularization loss La that introduces the equivariance constrain
to encourage the robustness to variations [23].

In order to ensure the upsampled flow fields better fit object
boundaries, we design a sampling regularization loss Lr to
constrain the learned adaptive sampling maps {U i

1}. We first
downscale the input image I1 to I01 , whose size is the same as
V 0
1 . Then we iteratively upsample the downscaled image and

compute a reconstruction loss with the original image, which

8

(a) Qualitative visualization comparison on Sintel Clean benchmark.

(b) Qualitative visualization comparison on Sintel Final benchmark.

Fig. 11. We show qualitative comparison with the previous methods UFlow [24], ARFlow [23] and SimFlow [27] on online evaluation benchmarks, including
Sintel Clean (a) and Sintel FInal (b). The last two columns visualize the error maps, where brighter regions indicate the larger estimation errors.

is formulated as follows:

Ii1 = U(Ii−11 , U i
1), (11)

Lr =
∑
p

Ψ(I1(p)− IN1 (p)), (12)

where U is our AFU module, IN1 is the reconstructed image
by the iterative upsampling process described in Eq. 11. This
means that we use the same parameters to upsample image as
in upsampling optical flow. An example of using AFU module
to upsample image is shown in Fig. 9. We use our AFU module
and bilinear method to upsample the low-resolution image (1

64
scale), respectively. As can be seen, our learned AFU module
can preserve detailed object structures in the image upsampling
process and it can be further applied to the flow upsampling
process by adding our sampling regularization loss.

Eventually, our loss function is a weighted combination of
above individual loss terms:

L = Ld + λbLb + λsLs + λcLc + λaLa + λrLr, (13)

where λb, λs, λc, λa and λr are hyper-parameters, set to λb =,
λs = 0.05, λc = 1, λa = 0.5, λr = 0.1 in our experiments.

IV. EXPERIMENTAL RESULTS

A. Datasets and Implementation Details

We conduct comprehensive experiments on three widely-used
optical flow benchmarks, including MPI-Sintel [25], KITTI
2012 [29], and KITTI 2015 [30]. MPI-Sintel contains 1,041
training image pairs extracted from the rendered open-source
movie, divided into ‘Clean’ and ‘Final’ passes. Following
previous works [23], [24], [27], we use both versions of
rendering images to train our model. KITTI 2012 and KITTI
2015 are real-world datasets collected in driving conditions.
There are 194 training pairs and 195 test pairs in KITTI 2012,
and 200 training pairs and 200 test pairs in KITTI 2015. The
two datasets also provide their multi-view extension datasets,
which are video sequences without optical flow labels. We train
our model on the multi-view extension datasets and evaluation
on the train sets of KITTI 2012 and KITTI 2015. Results of
the test set are uploaded to the KITTI website for benchmark
comparison.

The implementation of the proposed ASFlow is based on the
PyTorch toolbox. We train our model on 2 NVIDIA GeForce

9

TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON FOUR WIDELY-USED DATASETS USING EPE AND F1-MEASURE METRICS (THE LOWER
THE BETTER). FOLLOWING PREVIOUS WORKS [23], [24], [27], ‘−’ MEANS THE RESULT IS NOT REPORTED IN THE PAPER, ‘()’ INDICATES IMAGES FROM
TEST SET ARE USED DURING UNSUPERVISED TRAINING, AND ‘+FT’ MEANS THE SUPERVISED METHODS USE IMAGES OF TARGET DOMAIN FOR TRAINING,
OTHERWISE USING SYNTHETIC DATA LIKE FLYING CHAIRS [15] AND FLYING CHAIRS OCC [19]. THE BEST UNSUPERVISED METHOD IS MARKED IN BOLD

AND THE SECOND BEST IS MARKED IN BLUE FOR BETTER COMPARISON.

Method KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

train test train test (F1-all) train test train test

Su
pe

rv
is

ed

FlowNetS [15] 8.26 – – – 4.50 7.42 5.45 8.43
FlowNetS+ft [15] 7.52 9.1 – – (3.66) 6.96 (4.44) 7.76
SpyNet [16] 9.12 – – – 4.12 6.69 5.57 8.43
SpyNet+ft [16] 8.25 10.1 – 35.07% (3.17) 6.64 (4.32) 8.36
LiteFlowNet [17] 4.25 – 10.46 – 2.52 – 4.05 –
LiteFlowNet+ft [17] (1.26) 1.7 (2.16) 10.24% (1.64) 4.86 (2.23) 6.09
PWC-Net [18] 4.57 – 13.20 – 3.33 – 4.59 –
PWC-Net+ft [18] (1.45) 1.7 (2.16) 9.60% (1.70) 3.86 (2.21) 5.13
IRR-PWC+ft [19] – – (1.63) 7.65% (1.92) 3.84 (2.51) 4.58
RAFT [12] – – 5.54 – 1.63 – 2.83 –
RAFT-ft [12] – – – 6.30% – 2.42 – 3.39

U
ns

up
er

vi
se

d

BackToBasic [39] 11.30 9.9 – – – – – –
DSTFlow [38] 10.43 12.4 16.79 39% (6.16) 10.41 (6.81) 11.27
UnFlow [20] 3.29 – 8.10 23.3% – 9.38 (7.91) 10.22
OAFlow [40] 3.55 4.2 8.88 31.2% (4.03) 7.95 (5.95) 9.15
Back2Future [42] – – 6.59 22.94% (3.89) 7.23 (5.52) 8.81
NLFlow [50] 3.02 4.5 6.05 22.75% (2.58) 7.12 (3.85) 8.51
DDFlow [21] 2.35 3.0 5.72 14.29% (2.92) 6.18 (3.98) 7.40
EpiFlow [22] (2.51) 3.4 (5.55) 16.95% (3.54) 7.00 (4.99) 8.51
SelFlow [28] 1.69 2.2 4.84 14.19% (2.88) 6.56 (3.87) 6.57
STFlow [50] 1.64 1.9 3.56 13.83% (2.91) 6.12 (3.59) 6.63
ARFlow [23] 1.44 1.8 2.85 11.80% (2.79) 4.78 (3.87) 5.89
SimFlow [27] – – 5.19 13.38% (2.86) 5.92 (3.57) 6.92
UFlow [24] 1.68 1.9 2.71 11.13% (2.50) 5.21 (3.39) 6.50

ASFlow(ours) 1.26 1.5 2.47 9.67% (2.40) 4.56 (2.89) 5.86

TABLE II
ABLATION FOR UNSUPERVISED COMPONENTS. CL: CENSUS LOSS [20], BDWL: BOUNDARY DILATED WARPING LOSS [26], ARL: AUGMENTATION
REGULARIZATION LOSS [23], SGU: SELF-GUIDED UPSAMPLING, PDL: PYRAMID DISTILLATION LOSS. THE BEST RESULTS ARE MARKED IN BOLD.

CL BDWL ARL CAP AFU KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

ALL NOC OCC ALL NOC OCC ALL NOC OCC ALL NOC OCC

4.52 1.76 19.63 7.58 2.46 30.43 (3.52) (1.87) (12.9) (4.19) (2.59) (13.64)
! 3.39 1.09 16.58 6.89 2.20 28.12 (3.41) (1.62) (13.5) (3.85) (2.17) (13.71)
! ! 1.42 0.91 4.39 3.00 2.12 6.89 (2.84) (1.50) (10.6) (3.60) (2.28) (11.52)
! ! ! 1.37 0.93 3.98 2.64 1.96 6.01 (2.61) (1.33) (10.1) (3.17) (1.92) (10.70)
! ! ! ! 1.29 0.89 3.78 2.53 1.98 5.16 (2.51) (1.27) (9.79) (2.98) (1.79) (9.98)
! ! ! ! 1.30 0.88 3.82 2.57 1.99 5.08 (2.46) (1.23) (9.63) (2.94) (1.73) (10.07)
! ! ! ! ! 1.26 0.87 3.72 2.47 1.93 5.02 (2.40) (1.20) (9.36) (2.89) (1.71) (9.89)

GTX 2080Ti GPUs for about 1000k iterations. For better
generalization, we follow previous work [23] to use basic data
augmentation strategies like random crop and horizontal flip for
training. We use different crop sizes for the Sintel and KITTI
datasets. For Sintel dataset, the image size is 436× 1024 and
we set the crop size as 320 × 768. For KITTI datasets, the
original image size is around 376× 1240, we crop patches of
size 320× 896 for training. During the training process, the
training batch size is 2 and the learning rate is 10−4.

B. Comparison with State-of-the-Art
In Tab. I, We compare our method with State-of-the-Art

(SOTA) works, including both supervised and unsupervised

methods, on four widely-used benchmarks. The standard
evaluation metrics, i.e., average endpoint error (EPE) and
the percentage of erroneous pixels (F1-measure), are used
to evaluate the performance of the predicted optical flow. The
best unsupervised method is marked in bold and the second
best is marked in blue for better comparison.

1) Comparison with Unsupervised Methods.: As shown in
Tab. I, our ASFlow consistently achieves better performance
than other methods on four standard benchmarks. Specifically,
our method achieves an EPE error of 1.5 on the KITTI 2012 test
set, which surpasses previous top-ranked methods UFlow [24]
and ARFLow [23] by around 21.1% (1.9→ 1.5) and 16.7% (1.8
→ 1.5), respectively. For KITTI 2015 online evaluation, our

10

Fig. 12. Qualitative visualizations of the proposed method on Sintel Clean. The room-in flow results and error maps are shown in the right corner of each
sample.

TABLE III
COMPARISON OF OUR AFU WITH CLASSICAL UPSAMPLING METHODS,

SUCH AS JBU [52] AND GF [53], AND DEEP-BASED UPSAMPLING
METHODS, SUCH AS DJF [59], DGF [55], PAC [56], AND CUM [12].

AFU-NA MEANS THAT THE CONTROL PARAMETER τ(p) IS FIXED WITH
0.25 IN THE ADAPTIVE GUMBEL SOFTMAX BLOCK. AFU-NRL DENOTES

THE SAMPLING REGULARIZATION LOSS IS DISABLED.

Method KITTI
2012

KITTI
2015

Sintel
Clean

Sintel
Final

Bilinear 1.29 2.53 (2.51) (2.98)
JBU [52] 1.51 3.00 (2.66) (2.98)
GF [53] 1.40 2.90 (2.72) (2.92)

DJF [59] 1.36 2.79 (2.75) (3.20)
DGF [55] 1.41 3.14 (2.69) (3.05)
PAC [56] 1.42 2.65 (2.58) (2.95)
CUM [12] 1.30 2.60 (2.51) (2.93)

AFU-NA 1.29 2.57 (2.44) (2.91)
AFU-NRL 1.28 2.52 (2.45) (2.90)
AFU 1.26 2.47 (2.40) (2.89)

method set new records of 2.47 in EPE on the training set and
9.67% in F1-measure, which outperforms previous methods by
a large margin. On the most challenging dataset MPI-Sintel, our
method achieves EPE error of 4.56 on ‘Clean’ pass for online
testing. It obtains EPE = 5.86 on ‘Final’ pass, outperforming
previous top methods SimFlow [27] and UFlow [24] by 1.06
and 0.64 in terms of EPE. It is worth noting that our method
is the first one to achieve the best results on all benchmarks,
as shown in each line of Tab. I (best viewed in colors).

Fig. 10 and Fig. 11 provide some qualitative comparisons
with the previous methods such as UFlow [24], SimFlow [27],
ARFlow [23], SelFlow [28] and DDFlow [21]. As can be
seen, our method is clearly able to make accurate and smooth
predictions, especially when handling the tough regions around
the foreground boundaries.

2) Comparison with Supervised Methods.: We also report
the results of representative supervised methods for compre-
hensive comparison, see Tab. I. For cross-domain evaluation,
we consider the ground-truth optical flow is not available for

training. Thus, the supervised models are trained on synthetic
data such as Flying Chairs [15] and Flying Chairs occ [19],
while the training procedure of the unsupervised methods can
be directly performed only using target domain images. As
can be seen, our method achieves better performance than
all the supervised methods. Especially in real scenarios like
KITTI 2015 dataset, it significantly outperforms the well-known
supervised methods like LiteFlowNet [17], PWC-Net [18] and
RAFT [12] by a large margin (7.99, 10.73 and 3.07 in EPE,
respectively).

As for in-domain evaluation, our method generally achieves
competitive performance with the supervised methods. Spe-
cially, on KITTI 2012 and 2015 datasets, our method achieves
1.5 in EPE and 9.67% in F1-measure, which surprisingly exceed
the recent supervised methods like and LiteFlowNet [17].

C. Ablation Study

In this section, we conduct a series of ablation experiments
to evaluate each component in the proposed network. Follow-
ing [27], [28], we train our model on train sets of KITTI
and MPI-Sintel. The EPE error over all pixels (ALL), non-
occluded pixels (NOC) and occluded pixels (OCC) are reported
for quantitative comparisons.

1) Unsupervised Components.: Following the success of
prior works [20], [26], we employ some effective components to
boost the training of our model in an unsupervised manner. As
shown in the first line of Tab. II, we first train a baseline model
using photometric loss and smooth loss without the proposed
modules. After adding census loss [20] (CL), boundary dilated
warping loss [26] (BDWL) and augmentation regularization
loss (ARL), it obtains consistent improvements by three metrics
on all datasets, which demonstrates these three modules’ benefit
to boosting a better prediction. Meanwhile, the performance of
this model (CL + BDWL + ARL) is equivalent to that reported
in the previous best method UFlow [24].

Note that the components we used here are compatible
with each other because they are designed to tackle different
problems. For example, census loss (CL) is to increase the

11

Fig. 13. Illustration of the learned sampling kernels in our CAP and AFU. Left: the input reference image, the learned control parameter τ(p) in CAP, softmax
kernels and gumbel softmax kernels. Right: the prediction flow, the control parameter in AFU, softmax kernels and gumbel softmax kernels. The learned
control parameter τ(p) is visualized by the gray image, where the darker area represents the smaller parameter. The kernels in edge regions (localized by the
blue and red crosses) are also visualized, where the red numbers are the probabilities in the kernel and the brightness of the grid corresponds to its probability.

TABLE IV
COMPARISON OF OUR CAP WITH DIFFERENT FEATURE POOLING METHODS:

AVERAGE POOLING (AVE), MAX POOLING (MAX), AND STRIDING IN
CONVOLUTION (SIC).

Method KITTI
2012

KITTI
2015

Sintel
Clean

Sintel
Final

Bilinear 1.51 2.81 (2.75) (3.20)
AVE 1.39 2.75 (2.66) (2.98)
MAX 1.40 2.69 (2.72) (3.02)
SIC 1.30 2.57 (2.46) (2.94)
CAP 1.26 2.47 (2.40) (2.89)

robustness of illumination changes. Boundary dilated warping
loss (BDWL) is designed to learn motions towards outside the
image plane, which is crucial to improve the performance in
near image boundary regions for datasets with large camera mo-
tions, e.g., KITTI dataset. The augmentation regularization loss
(ARL) can introduce the equivariance constrain to encourage
the robustness to variations. The proposed pyramid sampling
method CAP and AFU can increase the feature representation
ability and improve the quality of flow upsampling. Thus
replacing the original striding strategy with our CAP in
each stage of the encoder network can greatly improve the
performance. Similarly, we append our AFU module on
decoders and observe that the three metrics are clearly reduced
(the lower is better). Finally, we fully equip the model with
both CAP and AFU, which brings about 10% performance
improvement.

2) Ablation for Upsampling Modules.: There have been
several works that attempt to propose general upsampling
operations based on image information, such as JBU [52],
GF [53], DJF [59], DGF [55] and PAC [56]. Recently,
RAFT [12] also introduced a convex upsample module (CUM)
to improve motion boundaries in the upsampling process.
However, these methods are not suitable for this challenging
task. Here we propose a task-specific upsampling strategy to
better serve the need of optical flow upsampling. To verify
the effect of our method, we carry out extensive comparisons
with the upsampling methods. Specifically, we build a simple
pyramid network with the same loss functions and repetitively
change upsampling operations with the modules mentioned

above for fair comparison. As we can see in Tab. III, our
AFU achieves the best performance overall the competitors.
This is because AFU can adaptively interpolate flow fields
with learnable weights in pyramid decoders, so that the blur
artifacts caused by cross-edge interpolation can be avoided,
see column 4 of Fig. 12.

We also report an empirical study of the adaptive gumbel
softmax (row 8) and the sampling regularization loss (row 9) in
Tab. III. AFU-NA is the non-adaptive softmax method, in which
the control parameter τ(p) in the adaptive gumbel softmax
block is empirically fixed with 0.25 following RAFT [12]. AFU-
NRL means that the sampling regularization loss is disabled.
Comparing AFU-NA and AFU, we can see that the content-
aware ability of the adaptive gumbel softmax method can
improve the performance, e.g., In KITTI 2015 dataset, the
adaptive gumbel softmax method reduces the EPE error from
2.57 to 2.47. The reason is that during the sampling process,
a smooth kernel is needed to capture context information
in flatten regions and a sharp kernel is needed to preserve
boundary information in edge regions. Thus the proposed
adaptive method can produce better results than the non-
adaptive method. Moreover. Comparing AFU-NRL and AFU,
we can see that the performance can be further improved by
using the sampling regularization loss. In Sintel Clean dataset,
the sampling regularization loss improves the EPE error from
2.45 to 2.40, which demonstrates the effectiveness of ensuring
the upsampled flow fields fit object boundaries. However, in
Sintel Final dataset, the improvement is relatively small. The
reason is that the Sintel Final dataset contains a lot of motion
blur and noise, which makes it difficult to learn to compute
suitable sampling kernels in object boundary regions.

3) Ablation for Feature Pooling Strategies.: Tab. IV reports
the comparison of our CAP with typical pooling strategies,
including average pooling (AVE), max pooling (MAX), and
striding in convolution (SIC). For a fair comparison, all the
experiments are conducted under the same setting. As we can
see, our CAP consistently obtains better scores than others
on four datasets. As mentioned in Sec. III-B, the features
are adaptively grouped based on content and appearance
similarity, which helps the network to maintain spatial details of
different objects. Experimental results demonstrate the obtained

12

TABLE V
QUANTITATIVE EVALUATION OF THE PROPOSED PYRAMID SAMPLING
METHOD IN SUPERVISED SETTING. THE NETWORKS ARE TRAINED ON

FLYINGCHAIRS DATASET AND EVALUATED ON THE TEST SET OF
FLYINGCHAIRS DATASET AND THE TRAIN SETS OF SINTEL DATASET.

method Chairs Sintel Clean Sintel Final

ALL ALL NOC OCC ALL NOC OCC

IRR-PWC [19] 2.08 2.80 – – 4.13 – –
baseline 2.09 2.72 1.63 8.50 4.05 2.93 10.27

baseline+CAP 2.04 2.62 1.56 8.50 4.03 2.91 10.18
baseline+AFU 2.01 2.60 1.53 8.52 3.98 2.87 10.19

ours 1.96 2.54 1.50 8.29 3.92 2.79 10.09

distinctive information is crucial for recovering the optical flow
on thin stuffs, as shown in Fig. 12 (first sample, column 3 and
5).

For a better understanding of the proposed CAP and AFU
modules, we also show the learned sampling kernels and control
parameter τ(p) in our adaptive gumbel softmax blocks in CAP
and AFU, respectively. Fig. 13 visualizes these results. As
can be seen, the control parameter τ(p) tends to be smaller
in object edge regions than in flat regions, which forces the
sampling kernels in edge regions to be close to a discrete one-
hot distribution. Therefore, adaptive gumbel softmax is effective
in preventing the phenomenon of crossing edge sampling.

4) Ablation in supervised setting. : To further demonstrate
the effectiveness of the proposed pyramid sampling method, we
conduct a set of experiments in supervised setting. Following
IRR-PWC [19], we use the train set of Flying Chairs dataset to
train networks and use the test set of Flying Chairs dataset and
the train set of Sintel dataset for evaluation. Results are shown
in Table V. The first and second lines are the performance
of our baseline model reported by IRR-PWC [19] and by our
implementation, respectively. As can be seen from Table V,
both the proposed CAP module and AFU module can improve
the performance, which demonstrates that improving the feature
representation ability and flow upsampling quality is also useful
in supervised learning settings.

V. CONCLUSION

We have presented ASFlow, an adaptive pyramid sampling
method for unsupervised optical flow estimation. Two modules
have been proposed, the content-aware pooling (CAP) for
the pyramid downsampling and the adaptive flow upsampling
(AFU) for the upsampling. Specifically, the CAP module can
assemble similar features together to improve the capability
of the multi-scale feature pyramid. The AFU module can
adaptively interpolate flow vectors without crossing edges,
resulting in sharper motion boundaries. We compared our
method with previous representative optical flow methods on
several leading benchmarks. In the further, we will explore the
proposed two modules in the other applications, especially the
CAP for the high-level vision tasks.

REFERENCES

[1] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[2] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz, “Super slomo: High quality estimation of multiple intermediate
frames for video interpolation,” in Proc. CVPR, pp. 9000–9008, 2018.

[3] A. Behl, O. H. Jafari, S. K. Mustikovela, H. A. Alhaija, C. Rother, and
A. Geiger, “Bounding boxes, segmentations and object coordinates: How
important is recognition for 3d scene flow estimation in autonomous
driving scenarios?,” in Proc. ICCV, pp. 2593–2602, 2017.

[4] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Proc. NeurIPS, pp. 568–576, 2014.

[5] J. Zhang, J. Pan, D. Wang, S. Zhou, X. Wei, F. Zhao, J. Liu, and J. Ren,
“Deep dynamic scene deblurring from optical flow,” IEEE Transactions
on Circuits and Systems for Video Technology, pp. 1–1, 2021.

[6] Y. Zhou, X. Xu, F. Shen, X. Zhu, and H. T. Shen, “Flow-edge guided
unsupervised video object segmentation,” IEEE Transactions on Circuits
and Systems for Video Technology, pp. 1–1, 2021.

[7] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation
and their principles,” in Proc. CVPR, pp. 2432–2439, 2010.

[8] D. Sun, E. B. Sudderth, and M. J. Black, “Layered image motion with
explicit occlusions, temporal consistency and depth ordering,” in Proc.
NeurIPS, pp. 2226–2234, 2010.

[9] M. A. Mohamed, H. A. Rashwan, B. Mertsching, M. A. Garcı́a, and
D. Puig, “Illumination-robust optical flow using a local directional pattern,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 24,
no. 9, pp. 1499–1508, 2014.

[10] D. Sun, C. Liu, and H. Pfister, “Local layering for joint motion estimation
and occlusion detection,” in Proc. CVPR, pp. 1098–1105, 2014.

[11] L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black, “Optical flow with
semantic segmentation and localized layers,” in Proc. CVPR, pp. 3889–
3898, 2016.

[12] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in Proc. ECCV, pp. 402–419, 2020.

[13] M. Zhai, X. Xiang, R. Zhang, N. Lv, and A. El Saddik, “Optical
flow estimation using dual self-attention pyramid networks,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 30,
no. 10, pp. 3663–3674, 2020.

[14] J. Chen, J. Lai, Z. Cai, X. Xie, and Z. Pan, “Optical flow estimation
based on the frequency-domain regularization,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 31, no. 1, pp. 217–230,
2021.

[15] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. v. d. Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow
with convolutional networks,” in Proc. ICCV, pp. 2758–2766, 2015.

[16] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in Proc. CVPR, pp. 2720–2729, 2017.

[17] T.-W. Hui, X. Tang, and C. C. Loy, “Liteflownet: A lightweight
convolutional neural network for optical flow estimation,” in Proc. CVPR,
pp. 8981–8989, 2018.

[18] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume,” in Proc. CVPR, pp. 8934–
8943, 2018.

[19] J. Hur and S. Roth, “Iterative residual refinement for joint optical flow
and occlusion estimation,” in Proc. CVPR, pp. 5747–5756, 2019.

[20] S. Meister, J. Hur, and S. Roth, “Unflow: Unsupervised learning of optical
flow with a bidirectional census loss,” in Proc. AAAI, pp. 7251–7259,
2018.

[21] P. Liu, I. King, M. Lyu, and J. Xu, “Ddflow:learning optical flow with
unlabeled data distillation,” in Proc. AAAI, pp. 8770–8777, 2019.

[22] Y. Zhong, P. Ji, J. Wang, Y. Dai, and H. Li, “Unsupervised deep epipolar
flow for stationary or dynamic scenes,” in Proc. CVPR, pp. 12095–12104,
2019.

[23] L. Liu, J. Zhang, R. He, Y. Liu, Y. Wang, Y. Tai, D. Luo, C. Wang,
J. Li, and F. Huang, “Learning by analogy: Reliable supervision from
transformations for unsupervised optical flow estimation,” in Proc. CVPR,
pp. 6489–6498, 2020.

[24] R. Jonschkowski, A. Stone, J. T. Barron, A. Gordon, K. Konolige, and
A. Angelova, “What matters in unsupervised optical flow,” in Proc.
ECCV, pp. 557–572, 2020.

[25] D. Butler, J. Wulff, G. Stanley, and M. Black, “A naturalistic open source
movie for optical flow evaluation,” in Proc. ECCV, pp. 611–625, 2012.

[26] S. Liu, K. Luo, N. Ye, C. Wang, J. Wang, and B. Zeng, “Oiflow:
Occlusion-inpainting optical flow estimation by unsupervised learning,”
IEEE Trans. on Image Processing, vol. 30, pp. 6420–6433, 2021.

[27] W. Im, T.-K. Kim, and S.-E. Yoon, “Unsupervised learning of optical
flow with deep feature similarity,” in Proc. ECCV, pp. 172–188, 2020.

[28] P. Liu, M. Lyu, I. King, and J. Xu, “Selflow:self-supervised learning of
optical flow,” in Proc. CVPR, pp. 4571–4580, 2019.

13

[29] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proc. CVPR, pp. 3354–
3361, 2012.

[30] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in Proc. CVPR, pp. 3061–3070, 2015.

[31] T.-W. Hui and C. C. Loy, “Liteflownet3: Resolving correspondence
ambiguity for more accurate optical flow estimation,” in Proc. ECCV,
pp. 169–184, 2020.

[32] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in Proc. CVPR, pp. 1647–1655, 2017.

[33] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Models matter, so does
training: An empirical study of cnns for optical flow estimation,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 42, no. 6,
pp. 1408–1423, 2020.

[34] G. Yang and D. Ramanan, “Volumetric correspondence networks for
optical flow,” in Proc. NeurIPS, pp. 794–805, 2019.

[35] S. Zhao, Y. Sheng, Y. Dong, E. I.-C. Chang, and Y. Xu, “Maskflownet:
Asymmetric feature matching with learnable occlusion mask,” in Proc.
CVPR, pp. 6278–6287, 2020.

[36] J. Wang, Y. Zhong, Y. Dai, K. Zhang, P. Ji, and H. Li, “Displacement-
invariant matching cost learning for accurate optical flow estimation,” in
Proc. NeurIPS, pp. 15220–15231, 2020.

[37] A. Ahmadi and I. Patras, “Unsupervised convolutional neural networks
for motion estimation,” in Proc. ICIP, pp. 1629–1633, 2016.

[38] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha, “Unsupervised deep
learning for optical flow estimation,” in Proc. AAAI, pp. 1495–1501,
2017.

[39] J. Yu, A. Harley, and K. Derpanis, “Back to basics:unsupervised learning
of optical flow via brightness constancy and motion smoothness,” in
Proc. ECCV Workshops, pp. 3–10, 2016.

[40] Y. Wang, Y. Yang, Z. Yang, L. Zhao, P. Wang, and W. Xu, “Occlusion
aware unsupervised learning of optical flow,” in Proc. CVPR, pp. 4884–
4893, 2018.

[41] L. Alvarez, R. Deriche, T. Papadopoulo, and J. Sanchez, “Symmetrical
dense optical flow estimation with occlusions detection,” International
Journal of Computer Vision, vol. 75, no. 3, pp. 371–385, 2007.

[42] J. Janai, F. Güney, A. Ranjan, M. Black, and A. Geiger, “Unsupervised
learning of multi-frame optical flow with occlusions,” in Proc. ECCV,
pp. 713–731, 2018.

[43] Z. Ren, W. Luo, J. Yan, W. Liao, X. Yang, A. Yuille, and H. Zha, “Stflow:
Self-taught optical flow estimation using pseudo labels,” IEEE Trans. on
Image Processing, vol. 29, pp. 9113–9124, 2020.

[44] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “Epicflow:
Edge-preserving interpolation of correspondences for optical flow,” in
Proc. CVPR, pp. 1164–1172, 2015.

[45] A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff, and M. J.
Black, “Competitive collaboration: Joint unsupervised learning of depth,
camera motion, optical flow and motion segmentation,” in Proc. CVPR,
pp. 12240–12249, 2019.

[46] Y. Zou, Z. Luo, and J.-B. Huang, “Df-net: Unsupervised joint learning of
depth and flow using cross-task consistency,” in Proc. ECCV, pp. 38–55,
2018.

[47] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth, optical
flow and camera pose,” in Proc. CVPR, pp. 1983–1992, 2018.

[48] L. Liu, G. Zhai, W. Ye, and Y. Liu, “Unsupervised learning of scene
flow estimation fusing with local rigidity,” in Proc. IJCAI, pp. 876–882,
2019.

[49] Y. Wang, P. Wang, Z. Yang, C. Luo, Y. Yang, and W. Xu, “Unos: Unified
unsupervised optical-flow and stereo-depth estimation by watching
videos,” in Proc. CVPR, pp. 8063–8073, 2019.

[50] L. Tian, Z. Tu, D. Zhang, J. Liu, B. Li, and J. Yuan, “Unsupervised
learning of optical flow with cnn-based non-local filtering,” IEEE Trans.
on Image Processing, vol. 29, pp. 8429–8442, 2020.

[51] Z. Ren, J. Yan, X. Yang, A. Yuille, and H. Zha, “Unsupervised learning
of optical flow with patch consistency and occlusion estimation,” Pattern
Recognition, vol. 103, p. 107191, 2020.

[52] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral
upsampling,” ACM Trans. Graphics, vol. 26, no. 3, pp. 96–es, 2007.

[53] K. He, J. Sun, and X. Tang, “Guided image filtering,” in Proc. ECCV,
pp. 1–14, 2010.

[54] Y. Li, D. Min, M. N. Do, and J. Lu, “Fast guided global interpolation
for depth and motion,” in Proc. ECCV, pp. 717–733, 2016.

[55] H. Wu, S. Zheng, J. Zhang, and K. Huang, “Fast end-to-end trainable
guided filter,” in Proc. CVPR, pp. 1838–1847, 2018.

[56] H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and J. Kautz,
“Pixel-adaptive convolutional neural networks,” in Proc. CVPR, pp. 11166–
11175, 2019.

[57] U. Ojha, K. K. Singh, C.-J. Hsieh, and Y. J. Lee, “Elastic-infogan:
Unsupervised disentangled representation learning in imbalanced data,”
in Proc. NeurIPS, pp. 18063–18075, 2020.

[58] Y. Wang and J. M. Solomon, “Prnet: Self-supervised learning for partial-
to-partial registration,” in Proc. NeurIPS, pp. 8812–8824, 2019.

[59] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep joint image
filtering,” in Proc. ECCV, pp. 154–169, 2016.

Shuaicheng Liu received the Ph.D. and M.Sc. de-
grees from the National University of Singapore,
Singapore, in 2014 and 2010, respectively, and
the B.E. degree from Sichuan University, Chengdu,
China, in 2008. In 2014, he joined the University
of Electronic Science and Technology of China
and is currently an associate professor with the
Institute of Image Processing, School of Information
and Communication Engineering, Chengdu, China.
His research interests include computer vision and
computer graphics.

Kunming Luo received the B.E. and M.S. degrees
from the University of Electronic Science and Tech-
nology of China, Chengdu, China, in 2016 and
2019. Now he is a researcher of Megvii Technology
Chengdu. His research interests include computer
vision and deep learning.

Ao Luo received the BE degree in automation from
Southwest Jiaotong University (SWJTU), Chengdu,
China, in 2013, and the Ph.D. degree in control sci-
ence and engineering with the School of Automation
Engineering, University of Electronic Science and
Technology of China (UESTC), Chengdu, China, in
2020. He was a visiting scholar in the department of
computer science, State University of New York at
Albany (UAlbany). Currently, he is a researcher in
MEGVII Technology, Chengdu, China. His research
interest is focused on deep learning for computer

vision.

Chuan Wang received his Ph.D degree from The University of Hong Kong in
2015, and B.Eng degree from University of Science and Technology of China
in 2010. He was a computer vision staff researcher in Lenovo Group Limited,
Hong Kong. He worked as a visiting scholar in National Laboratory of Pattern
Recognition, Chinese Academy of Sciences, Beijing, China in 2009 and State
Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, China in 2010.
He started his training program in Megvii in 2018. His research interests
include video analysis and computer vision.

14

Fanman Meng received the Ph.D. degree in signal
and information processing from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2014. From 2013 to 2014, he
was a Research Assistant with the Division of Visual
and Interactive Computing, Nanyang Technological
University, Singapore. He is currently an Associate
Professor with the School of Electronic Engineering,
University of Electronic Science and Technology
of China. He has authored or co-authored numerous
technical articles in well-known international journals

and conferences. His current research interests include image segmentation and
object detection. He is a member of the IEEE Circuits and Systems Society.
He was a recipient of the Best Student Paper Honorable Mention Award at the
12th Asian Conference on Computer Vision, Singapore, in 2014, and the Top
10% Paper Award at the IEEE International Conference on Image Processing,
Paris, France, in 2014.

Bing Zeng received the B.E. and M.Sc. degrees in
Electronic Engineering from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 1983 and 1986, respectively, and
the Ph.D. degree in Electrical Engineering from the
Tampere University of Technology, Tampere, Finland,
in 1991. He worked as a Postdoctoral Fellow with the
University of Toronto from September 1991 to July
1992 and as a Researcher with Concordia University
from August 1992 to January 1993. Then he joined
the Hong Kong University of Science and Technology

(HKUST). After 20 years of service, he returned to the UESTC in the summer
of 2013, through Chinas 1000-Talent-Scheme. At UESTC, he leads the Institute
of Image Processing to work on image and video processing, 3-D and multiview
video technology, and visual big data. During his tenure with the HKUST and
UESTC, he graduated more than 30 Master’s and Ph.D. students, received
about 20 research grants, filed 8 international patents, and published more
than 250 papers. He served as an Associate Editor for the IEEE TCSVT for 8
years and received the Best Associate Editor Award in 2011. He was General
Co-Chair of the IEEE VCIP-2016, held in Chengdu, China, in November 2016.
He is currently on the Editorial Board of Journal of Visual Communication
and Image Representation and serves as General Co-Chair of PCM-2017. He
was the recipient of a 2nd Class Natural Science Award (the first recipient)
from the Ministry of Education of China in 2014 and was elected as an IEEE
Fellow in 2016 for contributions to image and video coding.

