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Abstract— Occlusion is an inevitable and critical problem in
unsupervised optical flow learning. Existing methods either treat
occlusions equally as non-occluded regions or simply remove
them to avoid incorrectness. However, the occlusion regions can
provide effective information for optical flow learning. In this
paper, we present OIFlow, an occlusion-inpainting framework
to make full use of occlusion regions. Specifically, a new
appearance-flow network is proposed to inpaint occluded flows
based on the image content. Moreover, a boundary dilated warp is
proposed to deal with occlusions caused by displacement beyond
the image border. We conduct experiments on multiple leading
flow benchmark datasets such as Flying Chairs, KITTI and
MPI-Sintel, which demonstrate that the performance is signifi-
cantly improved by our proposed occlusion handling framework.

Index Terms—Optical flow, inpainting, appearance flow,
occlusion, unsupervised learning.

I. INTRODUCTION

PTICAL flow estimation is a fundamental vision task,
O which has been widely used in many applications such as
action recognition [1], video analysis [2]-[4], and automatic
driving [5]. There are various challenges regarding accurate
flow estimation, such as large displacements [6], noisy inter-
ferences [7], motion details [8], [9] and occlusions [10].
Traditional approaches optimize hand-crafted energy func-
tions to obtain flow fields [11]-[15]. Learning-based methods,
on the other hand, directly estimate flows from images by
convolutional neural networks (CNNs) [16]. Various network
designs have been proposed to overcome these problem-inherit
challenges [17]-[21] to improve the performance.

Among all these challenges, the most difficult one is the
occlusion, which is the key issue that prevents high-quality
performance and practical applications. Occlusion comes from
dynamic objects, discontinuous depth disparities, and frame
boundaries. Traditional methods often regularize incoherent
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motion to propagate flow from non-occluded surroundings to
occluded parts [22], [23]. However, this could fail when occlu-
sion regions are wrongly located or motions are propagated
from incorrect motion sources. Whereas, training supervised
CNNs requires a large amount of annotated training data [24],
which is hard to obtain in practice, especially when there are
occlusions [25], [26]. In addition, supervised networks can
only be trained on the synthetic data due to the absence of
ground-truth labels of the real images, leading to the domain
adaptation problem in real applications.

On the other hand, unsupervised optical flow can learn
from unlabeled data by minimizing photometric loss between
images, such that the training data is no longer a bottleneck.
However, directly minimizing photometric loss cannot learn
correct flows in occlusion regions due to incorrect warped
results. Unfortunately, early works of the unsupervised fam-
ily simply ignored the influence of occlusions and treated
them equally as non-occlusion regions [27]-[29]. To handle
this, Wang et al. [30] proposed an occlusion aware learn-
ing where occlusions are detected and discarded during loss
calculation. DDFlow [31] and SelFlow [32] applied ran-
dom cropping to hallucinate occlusions for self-supervisions.
However, all these methods miss the guidance in real
occlusion regions.

To this end, we propose our OIFlow which not only locates
but also inpaints real occlusions. Specifically, we treat the
error-prone occlusion regions as missing regions and inpaint
these regions by appearance flow, which is originally used
to propagate pixels or features from the source region to the
target region in the tasks of view synthesis [33] and image
inpainting [34]. Here, we modified the appearance flow net-
work that was proposed for the task of image inpainting [34]
to inpaint missing flows contextually. Fig. 1 demonstrates our
motivation. Fig. 1 (a), (b) and (e) show examples of reference
frame, ground truth flow and detected object occlusion mask,
respectively. Fig. 1 (c) simply discards occluded regions during
training. The flow on the back of the chair is incorrect.
Fig. 1 (d) is our result with occlusion regions inpainted by
our appearance flow refinement block. The motion of the
chair is now correct. Specifically, we show a zoom-in region
in Fig. 1 (f), where the inpainting is applied on the image
domain to inpaint from non-occlusion regions to occlusion
regions according to the image contents (red and blue arrows).
The same inpainting procedure is copied to the flow field
(Fig. 1 (g)). Fig. 1 (h) shows the inpainted flow field.
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(a) reference image. (b) ground truth flow. (c)(d) results without / with the optical flow refinement. (e) detected occlusion map. (f) a zoom-in window

with mask (dark region) overlaid on the image. Here an appearance flow is learned on the image domain, which is further used to inpaint the occluded regions
by the non-occluded ones. (g) the appearance flow of (f) is applied to guide the propagation in the flow field. (h) The propagated results in the zoom-in

region.

In addition, we further divide occlusions into two types,
object occlusion and boundary occlusion. For the former one,
which occurs within the image, we inpaint its flow according
to contextual relevance. For the latter one, which is caused
by displacement beyond the image boundary, we propose
a boundary dilated warp to correct its loss. Moreover, our
network backbone is built upon the supervised framework
IRR-PWC [35] by absorbing its merits but changed from
supervised to the unsupervised setting.

Through extensive experiments on multiple representative
datasets, we demonstrate that our OIFlow can significantly
improve the performance, exceeding all existing unsuper-
vised methods. In particular, on MPI-Sintel benchmark test,
we achieve EPE = 4.26 on the Clean pass (the second best
method is 4.78) and EPE = 5.71 on the Final pass (the second
best method is 5.89), which even outperform some supervised
methods. Our code and trained models will be available online.
Our contributions are summarized as follows:

o An occlusion inpainting framework named OIFlow is
proposed for unsupervised optical flow estimation.

e A new appearance-flow network named AppFlowNet-
Lite is proposed to inpaint occluded flows based on
the image content to provide additional guidance in
occlusions. Such important regions are either treated as
non-occlusions or totally abandoned previously.

« A Boundary Dilated Warping is proposed to handle
pixels caused by frame boundary occlusions, which is
effective and not attempted before.

II. RELATED WORK

A. Supervised Deep Optical Flow

Supervised methods learn optical flow from annotated
data [36]-[39]. FlowNet [16] is the first work to estimate

optical flow using a fully convolutional network. The fol-
lowing work FlowNet2 [17] extended FlowNet by stacking
networks iteratively, which largely improved the performance.
For large displacements, SPyNet [20] proposed to warp
images based on the coarse-to-fine manner. Then, PWCNet
[40], [41] and LiteFlowNet [21], [42] calculated cost vol-
ume after warping features, resulting in efficient and light-
weight networks. IRRPWC [35] proposed an iterative residual
refinement scheme for optical flow network design. Recently,
in order to extract better correspondence information for
optical flow estimation, VCN [39] built 4D volumetric corre-
spondence for capturing complementary notions of match cost.
MaskFlowNet [37] proposed to filter out useless areas during
building the cost volume. DICL-Flow [43] learned matching
costs from concatenated features with a displacement-invariant
cost learning module. More recently, LiteFlowNet3 [44]
improved the performance of optical flow estimation by cost
volume modulation and flow field deformation. RAFT [45]
proposed to build 4D correlation volume and estimate optical
flow by the recurrent network, yielding state-of-the-art perfor-
mance on multiple benchmarks. However, The performance
of these deep learning-based methods depend heavily on the
training data, which is prohibitively expensive in practical
applications.

B. Unsupervised Deep Optical Flow

Unsupervised methods do not require flow annotations
[27]-[29], where the photometric loss is optimized during
training. However, the photometric loss cannot work in occlu-
sion regions and even lead to incorrect guidance. Therefore,
works [30], [46] proposed to exclude occlusion regions from
photometric loss for improvements.

Recently, researchers introduced multi-frame
formulation [47], epipolar constrain [48], depth estimation
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[49]-[52], stereo matching [53], feature similarity
constrain [54] and non-local term [55] to further constraint
the problem. Concurrently, Back2Future [47] proposed to
take advantage of the guidance information in multiple
frames for optical flow learning. EpiFlow [48] introduced
other guidance information such as the low-rank information
and the sub-space information. PatchFlow [56] calculated
photometric loss by patch-based warping and estimated
occlusion mask by a CNN-based branch. STFlow [57]
proposed an iterative self-taught framework in which the
traditional flow interpolation method [23] is used to improve
the self-estimated flow to provide pseudo labels for network
training. DDFlow [31] and SelFlow [32] proposed to learn
optical flow based on data distillation. They artificially
create occlusions for self supervision. Recently, ARFlow [58]
proposed to learn optical flow from image sequences with the
self-supervision from augmentations. UFlow [59] proposed
to analyze different unsupervised components in a unified
framework systematically, which achieved state-of-the-art
performance. Although the performance can be largely
improved by previous methods, the real occlusions still have
no guidance.

In this paper, we provide guidance in occlusion regions by
our appearance flow warp and boundary warp.

C. Appearance Flow

Appearance flow is first proposed by [33] for view syn-
thesis. Appearance flow can copy pixels from source images
for target object generation, which is superior to generating
from scratch. Recently, appearance flow is applied for image
inpainting [34], where the appearance flow can propagate
features from existing regions to missing regions for texture
generation. In this paper, we modify the appearance flow for
optical flow inpainting.

Optical Flow
Estimation

Optical

Flow Flow

Refinement
Block

Optical Flow
Estimation

Optical Flow
Estimation

Optical Flow
Estimation

Optical
Flow Flow Flow

Optical Optical

Refinement Refinement

Block

Refinement
Block

The network structure of our OIFlow Network, which involves 3 main parts, a multi-scale feature extractor, and an initial optical flow estimation
block (Fig. 3) together with a refinement block (Fig. 4) working on each scale.

III. OUR METHOD
A. Network Structure

Our method is built upon a supervised optical flow estima-
tion framework IRR-PWC [35], which is further adapted to
enable unsupervised learning and occlusion awareness. It takes
two frames /1 and I, of size H x W x 3 as input and produces
forward and backward optical flows V¢, Vj, of size H x W x 2
as output. The entire network can be divided into three parts,
i.e., a feature extractor that extracts multi-scale feature maps
of inputs, an initial optical flow estimation block and a newly
introduced optical flow refinement block. We illustrate the
network structure in Fig. 2.

1) Multi-Scale Feature Extractor: Given two consecutive
frames Iy, I, we first extract (N + 1) scales of feature maps
{F,f},i =0,1,..., N foreach Iy (k € {1,2}) separately, by a
fully convolutional enc_oder £. For each frame, its successive
feature maps F} and F,éil (k € {1, 2}) follow a relationship of
2x scale. In our design, we denote the feature map of 1/64
image size as the O-th one, so that the i-th feature map is of
2i=6 image size, i = 0, 1,..., N. As such, the feature maps
extracted are written as follows.

{FI} =€), forie{0,1,...,N}and k € {1,2} (1)

In practice, we set N to 4 so that the finest scaled feature
maps extracted by £ are of 1/4 image size. This size is a
balanced result considering the accuracy and efficiency.

Note that the structure of the multi-scale feature extractor
is the same as IRR-PWC [35] where 6 convolution blocks
are used to extract feature maps in multiple scales. Each
convolution block contains 2 convolutional layers where one
layer with stride 2 to downscale the feature map and another
layer with stride 1 to translate feature dimensions.

2) Initial Optical Flow Estimation Block: We further gen-
erate initial forward and backward optical flows for each scale
in a coarse-to-fine manner. For the i-th scale, the feature pair
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Fig. 3.
the flow estimator and the context network.
(FI, in) is further fed into an estimator D, together with the
refined optical flows in the (i — 1)-th scale, i.e. V}fl, Vl;*l.
The estimator D produces two initial optical flows U’f, U, as:
i1 i i oyl
Vi ), Uy=D(F5, F,V,7), (2

Specifically, the feature maps {F li} from multiple scales
may have various numbers of channels, we add one 1 x 1
convolutional layer following F 1’ , to get a feature map F 1’ of a
uniform number of channels N (Eq. 3). Second, as the refined
optical flow V}fl from the (i — 1)-th scale is only 1/2 size of

U} = D(F], F3,

F,f, we upsample it to obtain its 2x version Vi~! Note that
in all the flow field upsampling processes, we multiply the
flow field by the corresponding upsample factor to represent
the correct motion in the higher resolution. After the flow
upsampling, we further applied IA/}*] to warp F2’ to obtain
1:"2’ (Eq. 4). Then, we calculate the correlation of Fli and le
(Eq. 5), and finally feed the three tensors to a flow estimator
followed by a context network, to obtain the initial forward
optical flow U ’f (Eq. 6). To sum up, the process above can be
described by the following equation:

F{ = Convixixn, (F}),

3)

\7}*1 = SampleTX2(2V}7l), Fy = W(F3, ‘7}.71), “)
(Di = Fll *le, (5)
Ul = D(F|, FL, Vi) = H(E], @, Vi), ©)

where WV is a conventional warping operation achieved by
pixel re-mapping, x is the correlation operator and H rep-
resents the combination of the flow estimator and context
network. Similarly, we obtain the backward optical flow Uli
by swapping Fi, in and replacing V]ifl by Vlffl, i.e. U;; =
D(Fi, Fi, V/™"). Specifically, we set V;l =V, ' =0 for
scale i = 0.

The structure of D is shown in Fig. 3(a), where a flow
estimator and a context network are used to estimate the
initial optical flow after feature warping and correlation. The
architecture of the flow estimator and the context network are
the same as that in IRR-PWC [35]. As detailed in Fig. 3(b),
a dense block with 6 convolutional layers is used in the flow

() concatenation

128 4 ;
dilated convolution .
fod output channel=128 Q\l | convolution layer
4 dilation=4 @ | output channel=32

(b) Flow Estimator and Context Network.

The structure of the initial optical flow estimation block. (a): the pipeline of the initial optical flow estimation block. (b): the detailed structures of

estimator to produce residual optical flow and a dense feature.
Then, in the context network, 4 dilated convolution layers and
3 conventional convolutional layers are used to extract context
information from the dense feature to refine optical flow.

3) Optical Flow Refinement Block: The initial optical flows
estimated above commonly have incorrect pixels caused by
occlusions. Severe artifacts may occur if we directly apply
warping. We propose to first detect an occlusion map and then
to inpaint the occluded regions using the optical flow in the
non-occluded ones. In our framework, we obtain the occlusion
map by comparing the initial forward and backward optical
flows U }, Ul’;, and design a light version of the Appearance
Flow Network [34] (AppFlowNet) as our inpainting approach,
named AppFlowNet-Lite (Detailed in Sec. III-A4). Specif-
ically, we follow the forward-backward consistency prior of
optical flow as in [46] to check whether a pixel is still within its
neighborhood after being moved by the forward and backward
flow vectors,

1, if [Vi(p) + Vi (p + Vi(p)]
> a1 (IVE(p) + Vi (p + Vi(P)) + a2
and p + V}(p) € Q

0, otherwise.

Mé),f(p) =

@)

where p is a pixel coordinate, a1, ay are threshold hyper-
parameters, Q is the image plane, and M{, s is the occlusion

map. In the occlusion map Mgi:, Iz ‘1’ represents the occlu-
sion pixels within the image plane and ‘0’ for other pixels
(non-occlusion pixels and the out-of-view occlusion pixels).
Note that we only refine the in-frame occlusion regions in
our optical flow refinement block, because the out-of-view
occlusion regions can be learned by properly modifying the
photometric loss using our boundary dilated warping, which
is detailed in Sec. III-B1.

After Mé, f is acquired, the normalized feature F i
the downsampled image Ili and the occlusion mask Méj 7
are used as the input of the AppFlowNet-Lite A to produce

an appearance flow A}. In A, the matching vectors are
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Fig. 4.
AppFlowNet-Lite.

generated for the pixels in occlusions, so that by warping U lf
with A;, a refined flow V} is achieved. Likewise, Vbi, AZ and
M}z , can be obtained similarly. In summary,

Vi =W(Up, Ap), Ay = AL I MG 5), (8

where (k, ) € {(1, f),(2,b)}, I,i are the corresponding
down-sampled version of Ix,k € {l1,2} in i-th scale. Note
that here we also feed .4 with F,é just for avoiding redundant
feature extraction steps and saving network parameters. See
Fig. 4(a) for the illustration of this block.

4) Our AppFlowNet-Lite: The original AppFlowNet [34]
follows a classical Encoder-Decoder framework and involves
a moderate scale of parameters. To facilitate the efficiency
of our framework, we follow the similar idea and design a
light version of it. We remove several layers from the original
network to make our implementation handle only 2 scales of
feature maps instead of 4 scales. Also, we make the parameters
of the two decoding layers shared so that more weights can
be saved. With these schemes, our AppFlowNet-Lite contains
only 3.82% of the parameters of the original one (2.06 M vs.
53.86 M), but the performance is demonstrated stable enough.

The structure of our AppFlowNet-Lite is shown in Fig. 4(b).
In the entire network, we first use several convolutional
layers to extract two feature maps in 1 and 1/2 scale. Then,
a shared decoder is utilized to produce the appearance flow.
The detailed structure of the shared decoder is illustrated
in Fig. 4(b), where we first use a 1 x 1 convolutional layer to
modify the number of the input feature channels into a uniform
one. Then we concatenate the unified feature with the previous
appearance flow map and feed it into an estimator block to
produce a new appearance flow. Note that the initial flow map
for the decoder in 1/2 scale is set as zeros. Also, in order
to learn residual information, a context block is connected
following the Estimator Block to better refine the appearance
flow. As for the architecture of the Estimator and Context
Blocks, we simply use 5 densely connected convolutional

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021
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(b) Framework of AppFlowNet-Lite.

The structure of the optical flow refinement block. (a): the pipeline of the optical flow refinement block. (b): the detailed structure of the

layers in the former one, 5 dilated convolution layers with
dilation {I,2,4,8, 16} and two convolutional layers in the
latter one to produce the residual information.

With the scale becoming finer, we obtain higher quality
flows with occlusions well inpainted. After we finish the N-th
scale with V}V and VbN , we directly upsample them to the

size of H x W x 2, and apply the refinement block to them.
By doing this, V¢, V}, are generated as the final output.

B. Unsupervised Training

We customize the unsupervised losses to characterize the
pixel alignment. Due to the existence of two types of occlu-
sion, that are caused by internal objects and the limited
image plane, we design corresponding warping strategies. For
the former one, we propose to utilize the standard warping
operation YW based on our learned appearance flow, while
for the latter case, we introduce a Boundary Dilated Warping
before formulating our unsupervised loss.

1) Boundary Dilated Warping: As aforementioned, some
of the pixels where M}z, ] (p) = 0 may be moved outside the
image plane. This type of pixels usually stay close to the four
external image boundaries. In order to make them directly
trainable in the unsupervised setting, we propose a boundary
dilated warping strategy Wgq. Fig. 5 shows an example. The
original reference image I{ and target image I are cropped
into the training image pair /; and />. Our goal is to warp the
target image I based on the optical flow V. The traditional
warp method W directly warps pixels of I by Vy, ignoring
motions toward the outside of the image plane. Thus the upper
region of the warped image is filled with zeros, i.e. black
pixels. To solve the problem, we design the boundary dilated
warping method that warps pixels of /] based on V, and
pixels moving outside the image plane of /> can be mapped
back and used to fill in the missing regions.

Specifically, in the training stage, we feed the network with
a cropped version of the raw image pair I{, I5. The cropped
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TABLE I

COMPARISON WITH EXISTING METHODS. OUR METHOD OUTPERFORMS ALL THE UNSUPERVISED OPTICAL FLOW METHODS ON KITTI AND SINTEL
DATASETS. WE REPORT EPE (THE LOWER THE BETTER) VALUE AS RESULTS ON ALL THE BENCHMARKS EXCEPT THE TEST SET OF KITTI
2015 WHERE F1 (THE LOWER THE BETTER) MEASUREMENT IS USED BY FOLLOWING THE ONLINE EVALUATION. ‘—’ INDICATES THE
RESULTS ARE NOT REPORTED, (-) INDICATES THE TESTING IS CONDUCTED ON THE TRAINING DATASET, AND ‘-SYN’ MEANS THE
MODEL Is ONLY TRAINED ON SYNTHETIC DATASETS

Method | Chairs | KITTI 2012 | KITTI 2015 | Sintel Clean | Sintel Final
| test | train test-all  test-noc | train test-all  test-noc | train test | train test
FlowNetS-syn [16] 2.71 8.26 - - - - - 4.50 7.42 5.45 8.43
FlowNetS [16] - 7.52 9.1 5.0 - - - (3.66) 6.96 4.44) 17.76
9 SpyNet-syn [20] 2.63 9.12 - - - - - 4.12 6.69 5.57 8.43
2 SpyNet [20] - 8.25 4.1 2.0 - 35.07% 26.71% (3.17) 6.64 (4.32) 8.36
E FlowNet2-syn [17] - 4.09 - - 10.06 - - 2.02 3.96 3.14 6.02
S FlowNet2 [17] - (1.28) 1.8 1.0 (2.3) 10.41% 6.94% (1.45) 4.16 2.01) 574
“ PWC-Net-syn [40] 2.00 4.57 - - 13.20 - - 3.33 - 4.59 -
PWC-Net [40] - (1.45) 17 0.9 (2.16)  9.60%  6.12% | (170) 3.86 | 221) 5.13
IRR-PWC [35] 1.67 - 1.6 0.8 (163)  7.65%  486% | (192) 3.84 | (251) 458
BackToBasic [29] 53 11.3 99 4.6 - - - - — - -
DSTFlow [28] 5.11 10.43 12.4 4.0 16.79 39% - (6.16) 10.41 | (6.81) 11.27
UnFlow [47] - 3.29 - - 8.10 23.3% - — 9.38 (7.91) 10.22
—"3 OAFlow-syn [30] 3.30 12.95 - - 21.30 - - 5.23 8.02 6.34 9.08
E OAFlow [30] - 3.55 4.2 - 8.88 31.2% - 4.03) 7.95 (5.95) 9.15
g PatchFlow [57] 3.65 3.34 4.0 - 6.91 21.82% - 4.45) 17.70 4.99) 7.98
2 Back2Future [48] - — - - 6.59 22.94%  13.85% (3.89) 17.23 (5.52) 8.8l
=) NLFlow [56] 2.98 3.02 4.5 - 6.05 22.75% - 2.58) 17.12 (3.85) 8.51
DDFlow-syn [31] 2.97 8.27 - - 17.26 - - 3.83 - 4.85 -
DDFlow [31] - 2.35 3.0 1.1 5.72 14.29% 9.55% (292) 6.18 (3.98) 7.40
EpiFlow [49] - (2.51) 3.4 - (5.55) 16.95% - (3.54) 17.00 4.99) 8.51
SelFlow [32] - 1.69 22 1.0 484  1419% 9.65% | (2.88) 656 | (3.87) 6.57
STFlow [56] 2.53 1.64 1.9 0.9 3.56 13.83% 9.70% 291) 6.12 (3.59) 6.63
ARFlow [59] - 1.44 1.8 - 2.85 11.80% - 2.79) 4.78 (3.87) 5.89
UFlow [60] 2.55 1.68 1.9 0.9 2.71 11.13% 8.41% (2.50) 5.21 3.39) 6.50
Ours 2.53 1.33 1.6 1.0 2.57 9.81% 7.73% (2.44) 4.26 335 571

Result of traditional warping

Fig. 5. An example of the boundary dilated warp (upper row) vs. the
traditional warp (lower row). The traditional warp often introduces empty
regions.

images Iy, I are achieved as follows,

I(p) = I (po + p), ke{l,2} ©)

where p is the upper-left coordinate of the cropped region in
Iy, k € {1,2}, and we need to keep I is totally covered by /; .
It looks like {I;} are the “dilated” version of {I;}. As such,
our boundary dilated warping is expressed as below,

Ik(p) = Wa(I[, Vs, po)(p) = I (po + P + Vp(p)), (10)
where (k, B) € {(2, f), (1, b)}.

Recently, DDFlow [31] proposed a two-stage data distil-
lation method to learn optical flow in boundary occlusion
regions. They first artificially produce out-of-view occlusion
regions by random cropping. Then they use the predictions of
a pre-trained teacher model as pseudo labels to stimulate the
student model learning to estimate optical flow in these newly
occluded regions. In contrast, our boundary dilated warping
is different from DDFlow because it is a one-stage method.
Specifically, we use boundary dilated warping to modify the
alignment losses so that they can provide correct guidance
information for optical flow learning in the boundary occlusion
areas. Therefore, networks can correctly estimate the optical
flow in out-of-view occlusion regions after end-to-end unsu-
pervised learning with our boundary dilated warping enabled.

2) Unsupervised Losses: In our framework, we use three
losses: the alignment loss for non-occlusion regions and
boundary occlusion regions, the occlusion inpainting loss
for in-frame occlusion regions, the smoothness loss and the
augmentation regularization loss for regularization.

a) Alignment loss: For unsupervised optical flow estima-
tion tasks, the core metric is the alignment quality. Here we
follow the popular brightness constancy assumption that the
two frames should have similar pixel intensities so as to utilize
the photometric loss £, as the main error metric. However,
considering aligned pixels do not exist in the internal occluded
regions, we only evaluate £, on the non-occluded regions and
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Comparison on KITTI 2012 benchmark. Results of the unsupervised methods UFlow [59], ARFlow [58], SelFlow [32] and DDFlow [31] and the

fully supervised methods PWC-Net [40] and IRR-PWC [35] are shown. For better comparison, error maps are also visualized in the even columns, where
areas with larger errors are brighter and the occluded regions are highlighted in red.

the boundary occluded regions. As mentioned before, we apply
Boundary Dilated Warping Wq to each frame instead of the
standard warping W. As a result, £, is formulated as follows.

>, (vt =)o (- Ma,p)]

P >, (1—=Mgq )
2 [1//(12 -hod- MQ,b)]
, (1D
2 (1 =Map)

where y(x) = (x| 4+ €)? is a robust loss with € = 0.01 and
g = 0.4 in our experiments, and © is element-wise multiplier.

To robustly handle the case that brightness constancy
assumption is not met, we further apply census transform [46]
C(-) to each of images I1, I, fl R fz before the calculation. Cen-
sus transform is a local binary pattern encoding the local pixel
intensity ordering, so that it has a certain capability to over-
come the illuminance variation. To substitute I, I5, f1 R fz by
their census transformed versions C(I1),C(12),C(f1),C(f2),
we obtain a census loss L. of similar to £, as
in Eq. 11.

Note that computing census loss by the combination of the
robust loss function and census transform is first proposed by
UnFlow [46]. Here, following UnFlow, we also calculate the
census loss based on a robust function and census transform
except for two differences. First, the form of our census loss

is different from UnFlow. We put the occluded mask in the
denominator as normalization, while UnFlow gives a constant
penalty to the occlusion pixels to avoid the trivial solution
where all pixels being occluded. Second, the robust function is
different. In our experiments, we found that the absolute robust
function is better than the robust generalized Charbonnier
penalty function (p(x) = (x2 + €2)” with y = 0.45) of
UnFlow.

b) Occlusion inpainting loss: The alignment losses (pho-
tometric loss and census loss) defined in Eq. 11 can
provide guidance information for optical flow learning in
non-occlusion regions. However, as mentioned above, occlu-
sion regions caused by moving objects cannot be aligned
essentially, which makes the alignment loss erroneous for
optical flow learning in these regions. Without proper guidance
information, optical flow estimation is always erroneous in
these object occlusion regions. In order to improve optical flow
estimation in these object occlusion regions, we propose an
occlusion inpainting method based on the contextual relevance
clue. We first learn the correspondence between non-occlusion
pixels and occlusion pixels using an image inpainting loss,
referred to as occlusion inpainting loss for short. This cor-
respondence is represented by the appearance flow estimated
by our AppFlowNet-Lite. Then, during the inference process,
we use the learned appearance flow to inpaint flow vectors in
object occlusion regions based on estimations in non-occlusion

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:00:02 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: OIFlow: OCCLUSION-INPAINTING OPTICAL FLOW ESTIMATION

Reference

DD ECWAN

RRPWE

bbb bbb

6427
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Fig. 7. Comparison on KITTI 2015 benchmark. Error maps are visualized in the even columns, correct pixels are displayed in blue and wrong ones in red.

regions. The occlusion inpainting loss is formulated as follows:

. i (Z,, [wii - o) o, ]
: i=0 ZP Msil,f
Ii _ i OMl
+Zp [W( 2 ng) Q’b:l), (12)
ZP Mﬂ,b

where 0, = Wi, Aif), 0, = W(Q'é, AL), and here
Q. k e {1, 2} are the masked versions Qf I; by the occlusion
maps Mslz,f» Mslz,b' That is to say, Q;(p) = I;(p) - (l —
Mé,ﬁ(p)),for (k, By € {(1, [, (2,b)}. N is the index of the
finest scale, being set to 4 in our experiments. Eq. 12 reveals
that the reconstruction error between the inpainted image
and itself is evaluated on the internal occluded regions only.
By minimizing this loss, our AppFlowNet-Lite well learns how
to proceed ‘“PatchMatch”-like hole filling for the RGB image,
so as to be further applied to the optical flows for refinement.
Considering there is no out-of-boundary problem, we just use
a standard warping W.

c) Smoothness loss: We also add a regularization term
to constrain the smoothness of the optical flows following the
idea in [30], which minimizes the first order and second order
edge-aware smoothness loss of the predicted optical flows.

Ly=>">" 10aVplexp(—|oalk|)

P dex,y

+>° > 197Vplexp(=107 1)), (13)

p dex,y
where (k, B) € {(1, ), (2, b)}.

d) Augmentation regularization loss: Augmentation reg-
ularization (AR) loss is a self-supervision learning objective
that first proposed by ARFlow [58]. Here we follow ARFlow
and use the AR loss in our framework to improve the per-
formance. Given the input image pair {I1, >}, its prediction
optical flow V; and occlusion mask Mq_ s, we first perform
transformations to construct the augmented sample:

(I, LL Vi, Mo r=T{L, L}, Vs, Ma, ), (14)

where 7 is the augmentation transformer, (I, I} is the image
pair after augmentation, V 7 and Mg, r are the optical flow and
occlusion mask after the same spatial transformation with the
image augmentation. Note that the value of the flow vectors
in Vf are also changed properly to represent the correct
motion between the image pair (I, I,}. Then, we feed the
new image pair into the network and calculate the AR loss by
using V s as a pseudo label and using Mo, ¢ to exclude the
unreliable regions in V/ 7. The AR loss can be formulated as
follows:

Lir=) [W(V? —Vpo- Mﬂ,f)]’ (15

p

where V? is the prediction flow of the image pair {I;, I»}.
Eventually, our unsupervised loss £ is defined as the com-

bination of the 5 losses above,
L= )Lpﬁp + lcﬁc + loiﬁoi + AsLs + larﬁara (16)

where the hyper-parameters are: 1, = 1, e =1, 1o = 1,
As = 0.05 and A4 = 0.5.
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Fig. 8. Comparison on MPI-Sintel Final benchmark, where results of other unsupervised methods UFlow [59], ARFlow [58], SelFlow [32] and DDFlow [31]
are shown. Results of fully supervised methods PWC-Net [40] and IRR-PWC [35] are shown in the last two rows. The error maps of the predictions are
visualized in the even columns. For better visualization, the zoom-in views of some local patches are depicted in the right bottom corner of each sample.

1V. EXPERIMENTAL RESULTS
A. Datasets and Implementation Details

We conduct our experiments and comparison on the fol-
lowing 3 datasets. During training, we set different crop sizes
for the different datasets, and the crop coordinate p is set
randomly, but requiring that the border of the cropped image
retains at least 8 pixels from the border of the original image.

1) Flying Chairs. Flying chairs [16] is a synthetic dataset
created by randomly moving chair images, which contains
22,872 pairs for training and 640 pairs for testing. Fol-
lowing DDFlow [31], the training images are used for
unsupervised training (no ground truth), and the test images
are used for validation. The image size is 384 x 512 and
we set the crop size as 320 x 320 for our boundary dilated
warping during the training process.

2)

3)

KITTI. KITTI 2012 dataset [25] contains 194 training
pairs and 195 test pairs, and KITTI 2015 dataset [5]
contains 200 training pairs and 200 test pairs. The two
datasets also contain multi-view extension datasets with
no ground truth. Following [58], [59], we use the image
pairs of the multi-view extension for training, and use
the train set of KITTI2012 and KITTI2015 for valida-
tion. Specifically, the image size is around 376 x 1240
and we set the crop size as 320 x 896 during training.
Results are uploaded to KITTI website for benchmark
comparison.

MPI-Sintel. MPI-Sintel [24] is a synthetic dataset. It con-
tains 1,041 training pairs and 564 test pairs. Two different
rendering sets are provided, ‘Clean’ and ‘Final’. We use
1,041 pairs from ‘Clean’ for training. The image size is
436 x 1024 and we set the crop size as 320 x 768 during
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Fig. 9. Visual comparison of with and without the proposed components on MPI-Sintel clean dataset. The error maps are also provided and the obvious
difference is highlighted by the red arrows.

training. We also upload results of the test set for online 2080Ti GPUs. The total number of parameters of our network
evaluation. is around 5.26M. To stabilize the training, we divide the train-
1) Implementation Details: We develop our code with ing process into 3 stages. First, we set the learning rate to 10~
PyTorch, and the whole training was completed in 500k itera- to learn initial optical flows with AppFlowNet-Lite disabled
tions which cost about 48 hours by 2 NVIDIA GeForce GTX and without occlusion handling. After about 100k iterations,
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TABLE II

ABLATION STUDY. WE CONDUCT EXPERIMENTS TO ASSESS THE IMPACT OF DIFFERENT COMPONENTS IN OUR FRAMEWORK. ‘OE’ MEANS OCCLUSION
EXCLUSION WHICH Is TO EXCLUDE THE OCCLUSION REGIONS FROM THE ALIGNMENT LOSSES AS IN UNFLOW [46]. ‘AR’ MEANS THE AR
Loss PROPOSED BY ARFLOW [58]. ‘BD’ MEANS THAT THE BOUNDARY DILATED WARPING IS USED TO MODIFY THE ALIGNMENT
LOSSES. ‘OI’ INDICATES THE OCCLUSION INPAINTING METHOD WHERE OUR APPFLOWNET-LITE IS ENABLED AND TRAINED
WITH THE OCCLUSION INPAINTING LOSS. THE EPE ERROR OVER ALL PIXELS (ALL), NON-OCCLUDED PIXELS (NOC)

AND OCCLUDED PIXELS (OCC) ARE REPORTED FOR DETAIL

OE AR BD o1 \ Chairs\ KITTI 2012 \ KITTI 2015 \ Sintel Clean \ Sintel Final
| ALL | ALL NOC OCC | ALL NOC OCC | ALL NOC OCC | ALL NOC OCC
380 | 617 135 3470 | 9.84 274 4056 | (4.34) (227) (2044)| (5.02) (2.97) (20.19)
v 325 | 210 128 680 | 431 274 1111 | 344) (1.78) (16.62)| (4.55) (2.87) (17.16)
v v 301 | 209 128 679 | 425 272 1077 | 325 (1.84) (1449)| (4.12) (2.68) (14.81)
v 328 | 386 124 1878 | 796 246 3179 | 3.53) (1.71) (17.85)| (448) (2.63) (18.40)
v v 305 | 137 087 429 | 284 201 641 | (2.88) (148) (14.06)| (4.10) (2.58) (15.63)
v v v 283 | 135 085 427 | 279 198 627 | (278) (1.50) (12.87)| (3.89) (2.53) (13.93)
v v 208 | 172 106 544 | 329 220 794 | 294) (1.51) (14.63)| (3.85) (2.42) (15.20)
v v v 206 | 134 092 381 | 261 194 602 | (255 (@121) (1346)| (3.57) (221) (1431)
v v v v 253 | 133 092 378 | 257 192 571 | 243) (124) (12.08)| (3.35 (2.17) (12.59)

we exclude the occlusion regions in £, to learn accurate
optical flows in the non-occluded regions for 100k iterations.
Finally, our AppFlowNet-Lite is enabled and predictions from
the non-occluded regions is propagated to the occluded ones.
We use the average endpoint error (EPE) to evaluate the quality
of our predicted optical flow. The percentage of erroneous
pixels (F1) is also used as an evaluation metric on the test set
of KITTI2015.

B. Comparison With Existing Methods

As shown in Table I, we compare our approach with the
previous representative works on Flying Chairs, KITTI and
Sintel datasets. The proposed approach outperforms all the
previous works on all the datasets.

On KITTI2012 online evaluation, we set the state-of-the-art
EPE of unsupervised methods to 1.6, which is even better
than fully supervised methods such as FlowNet2 [17] and
PWC-Net [40]. Moreover, on KITTI2015 online evaluation,
we improve the Fl-all value from 11.13% of UFlow [59] to
9.81% with 12% improvement, which is also comparable with
leading fully supervised methods. On the test benchmark of
MPI-Sintel, we achieve 4.26 on the clean and 5.71 on the final,
both are better than all the previous unsupervised methods.

We show the visual comparisons with previous leading
methods on KITTI benchmark [5], [25] in Fig. 6 and
Fig. 7, including unsupervised methods, such as UFlow [59],
ARFlow [58], SelFlow [32] and DDFlow [31] and supervised
methods such as PWC-Net [40] and IRR-PWC [35]. We label
the EPE error on the upper right of the image. Our method
produces smaller errors than all the other unsupervised ones.
We highlight some regions with yellow boxes in Fig. 6 and
Fig. 7. Note that, our method is comparable with or even
outperforms the two fully supervised methods [35], [40].

We also compare our method with other unsupervised
approaches on Sintel benchmark [24]. Fig. 8 shows two
examples as two columns, where the first row shows the
two frames and the other rows show the results from ours,

UFlow [59], ARFlow [58], SelFlow [32], DDFlow [31], PWC-
Net [40] and IRR-PWC [35]. We plot both flows and the
error map to demonstrate the differences. As seen from Fig. §,
our method produces sharper predictions in object edges and
less noise in other regions. Error from ours is the smallest
compared with other unsupervised methods.

C. Ablation Studies

We first conduct ablation studies to discuss the impact of
different components in our framework, i.e. the occlusion
exclusion (OE) of the alignment losses, the augmentation reg-
ularization loss (AR), the boundary dilated warping (BD) and
the occlusion inpainting method (OI). Then we compare our
occlusion inpainting method with classical image-guided inter-
polation methods. We report EPE error of all pixels (ALL),
non-occluded pixels (NOC) and occluded pixels (OCC) on
the validation set of KITTI, Sintel and Flying Chairs datasets.
Since our method is designed to improve the estimation of the
occlusion region, the OCC-EPE error is dramatically decreased
by our method.

1) Boundary Dilated Warping: As shown in Table II, The
EPE-OCC error is significantly reduced by using our boundary
dilated warping in all different learning settings. In particular,
KITTT dataset is collected during driving with camera shakes,
resulting in a large number of pixels moving outside the image
boundary. The proposed boundary dilated warping improves
the EPE-OCC error from 34.70 to 6.80 in KITTI 2012 and
from 40.56 to 11.11 in KITTI 2015 when no other occlusion
handling method is used. It is because our boundary dilated
warping can provide reliable guidance information for the
boundary occlusion region, thereby improving the optical flow
estimation in these regions.

We further demonstrate the visual comparisons of with
and without our boundary dilated warping in Fig. 9(a) on
MPI-Sintel Clean dataset. As seen from the results, optical
flow in areas close to the image boundaries can be well learned
if boundary dilated warping is enabled. The EPE error is
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Illustration of the occlusion inpainting. The first line shows the reference image, image inpainting result, the masked image and the occlusion

mask. The second line shows the groundtruth optical flow, optical flow prediction by occlusion inpainting, optical flow before occlusion inpainting and the

appearance flow produced by our inpainting network.

TABLE III

QUANTITATIVE COMPARISON OF OCCLUSION FILLING USING OUR
OCCLUSION INPAINTING VS. TRADITIONAL INTERPOLATION
METHODS. WE REPORT EPE-ALL ON VALIDATION SET

TABLE IV

QUANTITATIVE EVALUATION OF OUR OCCLUSION INPAINTING METHOD
IN SUPERVISED SETTING. METHOD MARKED BY ‘*’ MEANS THAT THE
MODEL IS PRETRAINED ON SINTEL DATASET USING

OF KITTI AND SINTEL DATASETS UNSUPERVISED METHOD
Method KITTI 2012 ‘ KITTI 2015 ‘ Sintel Clean ‘ Sintel Final method Chairs ‘ Sintel Clean ‘ Sintel Final

baseline 1.34 2.61 2.55 3.57 ALL | ALL NOC OCC | ALL NOC OCC

be}selme—res 1.33 2.60 2.54 3.55 IRR-PWC [35] 208 280 _ B 413 _ B
RicFlow [61] 1.49 2.87 248 351 baseli 200 | 272 163 850 | 405 293 1027

FGI [62] 1.35 2.69 2.50 3.47 ase:me : : : : : : ;
: : - ‘ baseline* 198 | 240 141 789 | 349 248 919
ours 133 257 243 3.35 baseline-res  2.04 | 2.69 162 849 | 399 288 1021
baseline-res* 1.96 2.31 1.36 7.63 347 2.46 9.13
) o ours 199 | 262 156 845 | 394 282 10.12
clearly dropped. Please notice the areas highlighted by the ours* 183 | 226 134 743 | 344 243 9.09

red arrow in the error image in Fig. 9(a).

2) Occlusion Inpainting: As shown in Table II, the perfor-
mance can be improved by our occlusion inpainting method,
especially for occlusion regions. Comparing row 2 and row 3,
the EPE-OCC error is decreased from 16.62 to 14.49 in
Sintel Clean pass and from 17.16 to 14.81 in Sintel Final
pass, indicating the effectiveness of our occlusion inpainting
method. This is because that our occlusion inpainting method
can explicitly introduce image content constrain for optical
flow estimation in occlusion regions.

We further show the results of enabling and disabling
our occlusion inpainting method on MPI-Sintel clean dataset
in Fig. 9(b). As seen, optical flow predictions by our occlusion
inpainting method are significantly sharper and more accurate
in object edges and occluded regions. We highlight some
regions with red arrows in Fig. 9(b) for a clear illustration.

In order to explain what exactly our inpainting network is
learning, we also show the occlusion mask, the appearance
flow, the image inpainting result and the optical flow inpainting
result in Fig. 10. As can be seen, the masked image is
successfully restored by a warping operation based on the
appearance flow. Moreover, after flow inpainting by using the
same appearance flow, the error-prone occlusion regions in
optical flow are improved, especially the regions around the
head of the human.

3) Occlusion Inpainting vs. Occlusion Interpolation:
Table III compares our occlusion inpainting method with
traditional image-guided flow interpolation methods, such as
RicFlow [60] and Fast Guided global Interpolation (FGI) [61].
The first row is the baseline model trained by using occlusion
exclusion, AR loss and our boundary dilated warping. The
‘baseline-res’ indicates that the appearance flow is used as a

residual flow to be added on the predicted flow for updating,
which slightly increases the performance. For a fair com-
parison, We replace the inpainting module in our network
architecture with RicFlow and FGI, which means that the same
initial optical flow and occlusion mask are used as the input of
these interpolation methods compared with our full method.
Results show that our learned occlusion inpainting model
outperforms traditional interpolation methods especially on
KITTT 2015 and Sintel datasets that contain a lot of in-frame
occlusion regions caused by dynamic objects.

4) Occlusion Inpainting in Supervised Setting: To further
demonstrate the usefulness of our occlusion inpainting method,
we conduct a set of experiments in the supervised setting.
Following IRR-PWC [35], we train networks on the train
set of Flying Chairs dataset and evaluate on the test set of
Flying Chairs dataset and the train set of Sintel Clean and
Sintel Final. Method marked by ‘*’ means that the model is
pre-trained on Sintel dataset using our unsupervised learning
method, otherwise, the model is trained from scratch. The
results are shown in Table IV. The first line is the performance
reported by IRR-PWC [35], whose network structure is the
same as our baseline model. From Table IV, we can see
that: (1) with unsupervised pretraining on the validation sets,
models can converge well and achieve better results, which is
also demonstrated by SelFlow [32]; (2) because the guidance
information of occlusion region is provided by the ground
truth, updating residual flow map in the ‘baseline-res’ method
can improve the performance; (3) the performance can be
further improved by our appearance flow warping, which has
the contextual propagate ability from non-occlusion regions to
occlusion regions.
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V. CONCLUSION

We have presented OIFlow, an occlusion-inpainting optical
flow estimation framework for unsupervised learning. It works
in a multi-scale manner and is composed of 3 main parts,
including a feature extractor to extract the feature maps of the
input frames in multiple scales, and a shared initial optical
flow estimation block together with an optical flow refinement
block working in each scale. Our framework enables the
awareness of the occlusion caused by internal objects and the
limited image plane. We design a special boundary dilated
warping combined with a light version of AppFlowNet to
inpaint the occluded regions. We conduct extensive ablation
studies to demonstrate the newly-introduced blocks can effec-
tively improve the quality of the predicted optical flows. The
results also show that our method significantly outperforms

the

state-of-the-art unsupervised approach for optical flow

estimation.
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