
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 12, DECEMBER 2020 4823

Weakly Supervised Semantic Segmentation by a
Class-Level Multiple Group Cosegmentation

and Foreground Fusion Strategy
Fanman Meng , Member, IEEE, Kunming Luo, Hongliang Li , Senior Member, IEEE,

Qingbo Wu , Member, IEEE, and Xiaolong Xu

Abstract— Weakly supervised semantic segmentation uses
image-level labels to extract object regions. The existing methods
focus on efficiently training CNN-based segmentation networks
using the image-level labels. In contrast to the existing methods,
this paper proposes a new fusion-based method, which first
segments the foregrounds of each image by multiple group
cosegmentation and then generates the semantic segmentation
by combining the foregrounds. Specifically, a new CNN-based
multiple group cosegmentation network is first proposed to
segment foregrounds employing two cues, the discriminative cue
and the local-to-global cue. Then, the fusion method is proposed
to simply perform semantic segmentation based on the multiple
group cosegmentation results. Experiments on the PASCAL VOC
2012 and MS COCO 2017 datasets demonstrate the effectiveness
of the proposed method with mIoU values that are obviously
larger than those of the existing methods.

Index Terms— Multiple group cosegmentation, weakly super-
vised semantic segmentation, class activation map, region fusion.

I. INTRODUCTION

SEMANTIC segmentation [1] is a fundamental task in
many computer vision applications. It is also a chal-

lenging task due to the variations of foregrounds and the
interferences of backgrounds. In the past decade, several
semantic segmentation methods have been proposed. Based on
the annotations given for segmentation, most of the existing
segmentation methods can be classified into three categories:
supervised [1]–[3], semi-supervised [4], [5] and weakly super-
vised semantic segmentation methods [6]–[8].

The supervised semantic segmentation method learns a
segmentation model from pixel-level annotations. The segmen-
tation results can be obviously improved by using the deep
learning-based methods such as the convolutional neural net-
work (CNN) [1]–[3] and long short-term memory (LSTM) [9]
network. However, these methods rely on large numbers of
manual annotations, which are often unavailable in practice.

Manuscript received December 4, 2018; revised April 14, 2019, June 5,
2019, September 7, 2019, and November 6, 2019; accepted December 8, 2019.
Date of publication December 24, 2019; date of current version December 4,
2020. This work was supported in part by the National Natural Science Foun-
dation of China under Grant 61871087, Grant 61831005, Grant 61525102,
Grant 61971095, and Grant 61601102 and in part by the Sichuan Science and
Technology Program under Grant 2018JY0141. This article was recommended
by Associate Editor H. Lu. (Corresponding author: Fanman Meng.)

The authors are with the School of Information and Communication
Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China (e-mail: fmmeng@uestc.edu.cn).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2019.2962073

The semi-supervised semantic segmentation method uses the
weak image-level labels, as well as a small number of pixel-
level annotations, which can efficiently guarantee the segmen-
tation performance while dramatically decreasing the burden
of label annotation. In some practical applications, however,
the pixel-level annotations are unavailable.

To overcome the drawbacks of the supervised and semi-
supervised manners, researchers have turned to the weakly
supervised manner that segments regions by image-level
labels. Compared with pixel-level annotations, the image-
level labels can be obtained easily. However, because the
image-level labels are extremely rough, it is challenging to
generate the object priors. To capture the object priors from
the image-level labels, two types of training-based methods
have been recently proposed: one-stage-based and two-stage-
based methods.

One-stage-based methods [10]–[13] aim at training an
end-to-end CNN-based segmentation network by image-level
labels, where the discriminative regions captured by the clas-
sification network are used to form the object priors [14].
Designing efficient segmentation loss is essential to the
one-stage-based method, and several types of segmentation
losses have been studied, such as the classification loss
by image-level labels [11], [12] and the segmentation loss
by pseudo-annotations [15]. The attention mechanism [16]
is also used to discriminate foregrounds from backgrounds.
These studies show that the discriminative regions in terms
of the class activation maps can be well captured by the
classification network. However, the discriminative regions
are usually a part of the region rather than the object
region, e.g., the “head” region of a “Cat”. Although some
strategies such as erasing strategy have been proposed
to partially remedy the problem of incomplete extraction
regions, it is still difficult to generate object-level activation
regions.

Two-stage-based methods [17], [18] consist of two steps.
The first step generates pseudo-annotations from multiple
images. The second step trains the semantic segmentation
model by the pseudo-annotations. The first step is the essential
step. Some strategies such as simple-to-complex [19], user
interactions [20] and videos [21] are proposed to enhance
the generation of the pseudo-annotations. However, it has
been proven that generating pseudo-annotations accurately is
a challenging task.
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Different from the existing strategies above, this paper
proposes a new weakly supervised semantic segmentation
strategy employing a class-level multiple group cosegmenta-
tion and fusion method (a brief version has been accepted by
VCIP 2018). Rather than training CNN-based segmentation
networks using the image-level labels as used in the existing
methods, we use the idea of forming the semantic segmenta-
tion result by combining the foreground regions. To this end,
we use a discriminative cue to obtain the initial local object
priors and then employ a local-to-global cue to segment object
regions from the local object priors. Subsequently, we simply
combine the cosegmentation regions to form the semantic
segmentation results. Although our method can be considered
as a two-stage based method, it is totally different from the
existing two-stage based method since the difficult step of
pseudo-annotation generation is avoided in our method.

Specifically, a class-level multiple group cosegmentation
model is proposed. We first train a CNN-based image clas-
sification network by the image-level labels to coarsely locate
the object regions. Since the discriminative regions are usually
local regions of the objects, we next train a local-to-global
network that introduces the global priors and segments the
objects from the local priors. After obtaining the foregrounds
of each class, we form the semantic segmentation results by
fusing the cosegmentation regions based on the image-level
labels. Since the pixels may be assigned to multiple classes
of labels, the probabilities of the pixels belonging to different
classes are used to determine the class labels simply. We verify
the proposed method on the PASCAL VOC 2012 and MS
COCO 2017 datasets. The experimental results show that the
proposed method can obtain better results.

The contributions of the proposed method are listed as
follows.

• We propose a new strategy for weakly supervised seman-
tic segmentation, which first obtains the foregrounds
of each class by cosegmentation, and then forms the
semantic segmentation by combining the cosegmentation
results.

• A new multiple group cosegmentation model and the
corresponding convolutional neural network are proposed.
The proposed method is an extension of the cosegmen-
tation task by considering the multiple sets of images
belonging to different classes.

• A new method for CAM generation is proposed, and
a CNN-based local-to-global segmentation network is
advanced.

The rest of this paper is organized as follows. The related
work is introduced in Section II. The proposed method is
presented in Section III. We verify the proposed method in
Section IV. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

A. Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation is a challeng-
ing task due to the gap between image-level labels and
pixel-level labels. To generate more object priors, multiple
images are simultaneously considered, and two types of

weakly supervised semantic segmentation methods, namely,
one-stage-based and two-stage-based methods, are proposed.

One-stage-based weakly supervised semantic segmentation
accomplishes segmentation by an end-to-end network [10].
The image-level labels are used to formulate the network
loss [11], [12]. For example, Hong et al. [15] propose a
weakly supervised semantic segmentation by weak-related
annotations. Both the image-level classification loss and the
pixel-level segmentation loss (to describe the weak-related
annotations) are used to form the network loss. Kolesnikov
and Lampert [14] propose a weakly supervised convolu-
tional neural network (SEC) by considering three losses, i.e.,
seed loss, expansion loss and boundary fitness loss. The
three losses are formulated by the class activation regions,
the global weighted rank pooling and the conditional ran-
dom field (CRF) and are minimized simultaneously. Several
extensions to the method [14] are proposed. Kim et al.
[13] use an iterative suppression process to obtain more
global discriminative regions. Also based on [14], Kwak
et al. [22] propose a new layer named the superpixel pooling
layer (SPL) to enable the discriminative region to achieve
a better fitness that extends to the image edges. Li et al.
[16] have recently generated an attention map by employing
a discriminative map and a self-guided generation of parts
to refine the foreground probability map. To generate robust
foreground priors, some methods focus on capturing more
cues. Roy and Todorovic [23] solve a weakly supervised
semantic segmentation problem by combining bottom-up, top-
down, and smoothness cues. In the considered framework,
the bottom-up classification loss is implemented for image-
level labels, the top-down segmentation loss is achieved by
the attention model, and the CRF-RNN model addresses the
smoothness. Durand et al. [24] generate a probability map
from a classification network via a multimap transfer layer
that can capture the regions with more discriminative parts.
Based on the image-level labels, Pathak et al. [25] propose
a new loss for training the segmentation network. Three
linear constraints, such as the suppression constraints for the
foreground, background and the object size, are used to form
the loss. Vezhnevets et al. [26] propose a multiple image
segmentation model based on the similarity of superpixels,
which clusters similar superpixels among images to form the
segmentation results.

The two-stage-based weakly supervised semantic segmen-
tation consists of two steps [17], [18]. The first step uses
image-level labels to generate pseudo-annotations. The second
step then trains the segmentation network utilizing the pseudo-
annotations. Moreover, such a strategy depends on sufficient
pseudo-annotations, and their generation is a challenging task.
However, several methods have been proposed to generate
pseudo-annotations.

1) Simple Images: Some researchers generate pseudo-
annotations from simple images. For example, Hou et al. [19]
generate pseudo-annotations from simple images first and
then use the annotations to segment complicated images.
Wei et al. [10] generate initial pseudo-annotations from sim-
ple images by implementing saliency detection. The segmenta-
tion model is first learned from the initial pseudo-annotations
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obtained by saliency detection. Then, the segmentation model
is used to generate pseudo-annotations from the complicated
images. The segmentation model is repeatedly updated until
reaching convergence.

2) User Interactions: Some methods use a few user inter-
actions to enhance the generation of pseudo-annotations. For
example, Russakovsky et al. [27] use user-given pixel seeds to
constrain a weakly supervised semantic segmentation model.
Two types of losses, namely, point-level loss and image-level
loss, are proposed. Arbelaez et al. [28] use bounding boxes
to generate pseudo-annotations from images. The superpixels
are combined based on the windows to form the segmentation
annotations. Based on DeepLab, Papandreou et al. [29] train
the segmentation model by bounding boxes and image-level
labels. Using the two steps of pseudo-annotation generation
and network training, object regions are first segmented from
weak labels, and then, the segmentation network is trained by
the pseudo-annotations. The expectation maximum (EM) algo-
rithm is employed to refine the segmentation model and the
segmentation results alternatively. Lin et al. [30] implement
user scribbles to generate initial annotations. The FCN [2] is
then trained to update the segmentation annotations. Rather
than windows, Khoreva et al. [31] use GrabCut to generate
better annotations. Qi et al. [32] first generate object windows
automatically and then generate the annotations by merging
the superpixels through use of the windows. Tang et al. [20]
introduce the classical normalized cut loss in the CNN method
to generate the pseudo-annotations from user scribbles.

3) Video: Some methods generate more accurate
pseudo-annotations from videos. Tokmakov et al. [33]
generate pseudo-annotations from videos by motion cues.
Hong et al. [21] use web-crawled videos to generate pseudo-
masks, where the attention regions are employed to enhance
the generation of the segmentation mask.

4) Image-Level Labels: Image-level labels are also used
to generate pseudo-annotations directly. Saleh et al. [34]
combine class activation maps and multiple levels of the
convolution layer to obtain the foreground probability map,
which is then fed to the CRF to output the segmentation
regions. Ge et al. [35] generate pseudo-annotations employing
the three steps of object localization, pseudo-annotation gen-
eration, and network training. Oh et al. [36] generate pseudo-
annotations with discriminative cues and saliency cues, and
better results are obtained. Jiwoon and Suha [37] generate the
segmentation masks by the random walk process, where an
affinity matrix that describes the similarity of nearby pixels is
calculated. We refer readers to [38] for more detailed reviews
of weakly supervised semantic segmentation.

B. Cosegmentation

Cosegmentation [6], [39]–[42] aims at extracting common
objects from multiple images. It is usually formulated as an
energy minimization problem with the consistency constraint
of the foregrounds. This process is challenging due to the
variations of foregrounds. Several cosegmentation strategies
are proposed, which can be classified into single group- and
multiple group-based cosegmentation.

Single group-based cosegmentation [43]–[46] considers a
set of images and is usually formulated as an energy mini-
mization problem. The energy consists of two terms, namely,
the segmentation term and the foreground consistency term.
The segmentation term is formulated as a traditional single-
image-based segmentation model, such as Markov random
fields (MRF), active contours, and spectral clustering-based
segmentation models that segment foregrounds from back-
grounds. The foreground consistency term is used to force
the foregrounds to be similar. Several foreground consistency
terms are proposed to consider the trade-off between the
similarity measurement and the energy minimization. The
successful segmentation is obtained when the backgrounds are
different. However, when the images contain similar back-
grounds, the performance is dramatically reduced. Although
additional priors, such as the saliency and objectness priors,
are used to avoid the interference of similar backgrounds,
cosegmentation by the single-image group is still challenging.

In contrast, multiple group cosegmentation considers mul-
tiple sets of images, such as groups of simple images and
complicated images. The multiple group cosegmentation has
two advantages. First, the intergroup cue can be used to
enhance the cosegmentation. Second, different types of mul-
tiple group images can be collected to provide additional
discriminative cues. For example, in [39], the simple image
group is used to help the cosegmentation of the complicated
image group. The image groups containing different noise
images are combined to obtain the noise images. Multiple
group cosegmentation has shown superior performance over
single group cosegmentation. However, the existing multiple
group cosegmentation focuses on only one class, such as
multiple sets of images of a “Cat”. However, in many applica-
tions such as semantic segmentation, the multiple groups are
usually related to different classes, such as “Cat”, “Bird” and
“Car”. Here, we consider the multiple group cosegmentation
of different classes and name it class-level multiple group
cosegmentation.

C. Co-Saliency Detection

Another related work is co-saliency detection [47]–[50],
which aims at locating common salient objects from multiple
images, and is similar to cosegmentation. The essential step
of co-saliency is how to efficiently locate common salient
regions between images. Some strategies have been proposed.
For example, Cong et al. [47] use depth map as additional cue
to formulate three constraints such as the similarity constraint,
the cluster-based constraint and the saliency consistency to
locate the common salient regions. Wang et al. [48] use a
two-branch-based network to simultaneously learn high-level
group-wise semantic representation and deep visual features,
which are then combined to form top-down semantic guidance
to improve common salient region detection. Zhang et al. [49]
use multiple instance learning (MIL) to learn the discrimi-
native classifiers, and measure the intra-image contrast and
the inter-image similarity to find common salient regions.
Cao et al. [50] propose a method to generate co-saliency map
by combing saliency detection results of multiple saliency
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Fig. 1. The pipeline of the proposed method. Multiple group cosegmentation is first used to obtain the foreground of each image by its classification label.
By this process, the inter-information and intra-information are considered. Then, the segmentation results are fused (fusion step) to form the final semantic
segmentation results.

detection algorithms. The rank constraint is used to explore
the relationship between different saliency maps and generate
self-adaptive weights for combination.

In general, co-saliency map is used as an important cue to
guide cosegmentation. For example, Fu et al. [51] use depth
information to enhance identification of similar foreground
objects via RGBD co-saliency map, and formulate coseg-
mentation in a fully-connected graph with mutex constraint
to handle noisy images. Furthermore, Fu et al. [52] extend
the work in [51] to deal with cosegmentation of multiple
foregrounds in videos via the spatio-temporal smoothness.
Hsu et al. [53] introduce a new instance cosegmentation task
and decompose the task into two steps, of which the first
step solves co-peak search by jointly optimizing co-peak,
affinity and saliency losses, and the second step solves instance
mask segmentation via an efficient proposal ranking algorithm.
Kompella and Kulkarni [54] propose a weakly supervised
multi-scale recurrent convolutional neural network for co-
saliency detection and cosegmentation, which first extracts
the superpixel features from representative multi-scale images,
and then trains a RCNN to extract the common salient object
regions, achieving faster and more accurate performance with
small training dataset. Here, the CAM can also be considered
as a specific co-saliency map that highlights discriminative
regions among classes. We refer readers to [55], [56] for more
details of co-saliency.

III. THE PROPOSED METHOD

A. Overview

We aim at segmenting semantic regions from multiple sets
of images by image-level labels. The overview of the proposed
method is shown in Fig. 1, where two steps that consist of the
multiple group cosegmentation step and the fusion step are

used. The first step is to extract common regions of each class
based on classification model and local-to-global segmentation
model. The second step is to combine these regions to form
the semantic segmentation results directly.

In the first step, given multiple images I = {I1, · · · , In}
and the corresponding image-level labels L = {L1, · · · , Ln},
where Li = {li1, · · · , li|Li |} is a set of labels (an image may
contain multiple objects), we first classify the images into mul-
tiple image groups C = {C1, · · · , Cm} by the image labels L.
Then, for each group Ci , we implement multiple group coseg-
mentation to obtain the foregrounds Fi = { fi1, · · · , fi|Ci |} of
images in Ci . Such a process can be formulated as

Fi = H (Ci |C), i = 1, · · · , m (1)

where H is the multiple group cosegmentation, and H (Ci |C)
means considering all image groups C for Ci . We denote F =
{F1, · · · , Fm} as the foreground set of all groups.

In the fusion step, we combine the cosegmentation fore-
grounds of each image Ii by their labels Li and finally form the
semantic segmentation results Si . We represent such a process
as

Si = Fusion(F|Li ), i = 1, · · · , n (2)

B. Multiple Group Cosegmentation by Discriminative Prior

We formulate the multiple group cosegmentation as an
energy minimization problem by considering the discrimina-
tive probability map and the local-to-global segmentation. The
first one is used to consider the common cue and discrim-
inative cue among image groups. Since the priors provided
by the image-level labels are usually local rather than global,
the second one is used to provide global priors.
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Fig. 2. Examples of the distance function. The L2 norm is used.

1) Energy Formulation: Given multiple groups of images
C = {C1, · · · , Cm} with m classes, we form the energy
function as

E(F, M) =
m∑

i=1

ni∑

j=1

[d(Fij , gm(Mij )) + d(Mij , g f (Fij ))] (3)

where Mij is the discriminative probability map for Cij (the
j th image in the i th class Ci ), with the same size as the image.
The value of a pixel in Mij means the probability of the pixels
to distinguish the image. M is the set of all Mij . Since Mij

is implicitly expressed among the images and image groups,
we use it as latent variable here.

Fij is the foreground mask of image Cij , which is our
target. Functions gm and g f are functions that transfer the
discriminative probability map to the expected segmentation
region and the segmentation region to the expected discrim-
inative probability map, respectively. The aim of introducing
the transfer function is to bridge the two types of data for
measuring their fitness. The idea is to capture the contextual
cues from the local prior and image and generate object
regions by the contextual cues. The transfer function can be
trained to learn the mapping from the local prior to the object
region. A CNN-based network is used to formulate the transfer
function. Details can be found in Section III-B.1.b.

The function d calculates the mean Euclidean distance
between the pixel values of a pair of segmentation masks
or probability maps. Here, the distance between foregrounds
and the expected foregrounds and the distance between the
discriminative probability map and the expected discrimina-
tive probability map are considered. Fig. 2 shows examples
of calculating distance d between a pair of foregrounds
(gm(Mij ), Fij ) and a pair of discriminative probability maps
(g f (Fij ), Mij ), where N is the total number of pixels of the
input. || · ||2 is the L2 norm.

As seen from (3), our energy function measures the fitness
between the foregrounds and the discriminative probability
maps, and we aim at obtaining the foregrounds that have the
best fitness to the discriminative probability map, i.e.,

F∗ = arg min
F,M

E(F, M) (4)

The proposed energy function in (3) is designed as a sum of
terms involving per image, per class and foreground segmen-
tation and is a sum of independent terms. It is different from

the traditional cosegmentation energy function that uses the
foreground consistency term to form the cosegmentation task.
The reasons for such a definition are twofold. First, it leads
to simple optimization of the segmentation model. Second,
the cosegmentation can be represented by the latent variable
M that represents the discriminative region of the image. Since
the discriminative region is captured by comparing the image
with the images of all classes, it describes two essential cues of
cosegmentation, such as the common cues within each image
class and the discriminative cue between multiple classes.
Therefore, the cosegmentation is implemented along with the
searching of the latent variable M.

We next detail our energy function and its minimization.
a) The discriminative probability map M: The purpose

of introducing the discriminative probability map is to capture
segmentation cues from both inter-image and intra-image
groups. In our method, the set of discriminative probability
maps M is obtained by iteratively updating M from a set
of discriminative maps. Here, the initial probability map is
initialized by the class activation map of the image.

We use the method in [11] to generate the class activation
map, of which the main idea is to first train the multiple-class
based classification network, and then extract the region of
each image by the classification network. The class activation
map for class ci is set by the weighted sum of the feature
maps of the last convolution layer. The weights of the fully
connected layer corresponding to the class ci are used as the
weight vector. The method [11] consists of two stages, namely,
the training stage and inference stage. The training stage trains
the classification model based on the image-level labels. The
inference stage generates class activation maps of the new
images. The probability maps are finally generated to initialize
the discriminative probability maps of the test images.

However, the existing method considers each class sep-
arately while the mutual information among the classes is
ignored. Here, we propose a new class activation map gener-
ation network that uses a refine-block to combine the mutual
information of different classes. Our CAM generation network
is shown in Fig. 3. The backbone network is first used to
obtain high-level convolution features. Then, we use a 1 × 1
convolution layer to generate the initial class activation map.
Afterward, the class activation maps are fed to the refine block
to output the refined maps. Global average pooling is used to
obtain the classification scores from the class activation maps
for training.

The refine block consists of three branches. The first is
composed of the initial class activation maps. The second
and third branches consist of the batch normalization (BN)
layer, ReLU layer and convolution layer followed by the BN
layer. We select the size of the convolution filter as 3 × 3
and 1 × 1 for the second and third branches, respectively.
The outputs of the three branches are summed to obtain the
refined maps. After training the network with the classification
task, the refined class activation map is used as our initial
discriminative probability map.

b) The function gm: The function gm transfers the image
to the segmentation region that is supported by the discrimina-
tive probability map. It is used to measure the fitness between
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Fig. 3. The proposed class activation map generation network. The network
is a special multilabel classification network, which aims to obtain better class
activation maps. A coarse map is first obtained, and then, a refine subnetwork
is used to obtain the final CAM.

Fig. 4. The structure of the proposed function gm . The convolutional neural
network is used to transform the image and discriminative probability map to
the expected segmentation mask.

the segmentation region and the discriminative probability
map. Here, we also aim to use gm to add the global priors to
refine the local discriminative regions generated by the CAM
method.

The function gm is achieved by a convolutional neural
network named C N Nlocal−global . The input (Ii , M) is the
combination of the image and its discriminative probability
map. The output is the binary segmentation mask F ′. We use
VGG-16 as the backbone network for feature extraction. Since
we lack pixel-level annotations of the given images at the
test stage, we train the network C N Nlocal−global offline. The
implementation of function gm based on the convolutional
neural network is illustrated in Fig. 4, where the input is
the image and the corresponding discriminative probability
map, and the output is the foreground segmentation mask. The
convolutional neural network is used to accomplish the trans-
formation. In the training of the network, the discriminative
maps are generated from the groundtruth by the g f function.

We can use the function gm to achieve segmentation of
the object region from a local part prior, with the idea of
first capturing the contextual cues from the image and then
mapping local priors to object regions. To this end, we use
various local priors and segmentation masks to learn the
network sufficiently. In addition, since it is hard to segment
object region successfully by running the network only once,
an iteration process is used to refine the prior and the segmen-
tation mask gradually. Fig. 5 displays some results of our local-
to-global segmentation network, where the original images,
the groundtruth, the discriminative probability maps and the
corresponding binary masks in three iterations (iter0, iter1 and
iter2) are displayed. It can be seen that the discriminative
probability maps are improved by the iteration process, and
the object regions are finally obtained.

c) The function g f : The function g f is used to transfer
the image segmentation mask to the discriminative probability
map. We propose a downsample method for such a transfor-
mation. Given a segmentation mask F0 with the same size as
the image, we first downsample the mask F0 to a small size
of mask Fs (with a size of 7 × 7). Then, we upsample Fs to
the size of F0 by a bilinear interpolation method and obtain
the new map F ′

1. Afterward, we set the value of F ′
1 smaller

than a threshold T f to zero and obtain the new map F ′
2, where

T f = δ ·vm with vm as the maximum value of F ′
1 and δ = 0.9

as the deletion factor. Finally, we downsample F ′
2 to the size

of 7 × 7 first and then upsample to the size of F and obtain
the discriminative map F ′. The process of the function g f is
shown in Fig. 6.

Note that the mask sizes after employing the downsampling
and upsampling operators are set to 7 × 7 and the original
size, respectively, which are set empirically, with the aim of
making the discriminative probability maps similar to the class
activation maps generated by the existing CAM generation
method [11].

Various discriminative probability maps are required to learn
the transferring function gm . Here, we use function g f with
different settings of δ to generate the training samples. Two
steps are used. In the first step, an image and its groundtruth
mask are selected randomly. Then, the discriminative proba-
bility map is generated from the mask by the function g f with
δ generated randomly. The image, the groundtruth mask and
the probability map form a training sample.

2) Energy Minimization: We next introduce the energy
minimization. The energy function in (3) consists of two
variables M and F. We therefore minimize the energy with
the EM framework, i.e., iteratively updating F and M until
convergence of the two variables. Two steps are used. In the
first step, given an image Cij and its corresponding dis-
criminative probability map Mij , we feed them to the local-
to-global network C N Nlocal−global and obtain the expected
regions F ′. Then, we update Fij by Fij = F ′. In the second
step, we update Mij by the new foreground Fij using the
transformation function g f , i.e., Mij = g f (Fij ). The two
steps are implemented iteratively until the iteration number is
reached. Here, we set the iteration number as three empirically.

The total energy minimization process can be represented
by a convolutional neural network, as shown in Fig. 7.
Specifically, given an image Cij , we first obtain the initial
discriminative probability map Mij by our CAM generation
method. Then, Cij and Mij are forwarded to the local-to-
global segmentation network. A foreground mask Fij =
C N Nlocal−global (Cij , Mij ) is obtained. Next, the new class
activation map M ′

i j is updated by function g f and the fore-
ground mask Fij , i.e., M ′

i j = g f (Fij ), and the segmentation
process is implemented again to obtain the new segmentation.
These two processes are iteratively implemented until the
iteration number is reached.

C. The Fusion of the Cosegmentation Results

The processes are displayed in Fig. 8. Given an image
Ii , the labels Li = {li1, · · · , li|Li |}, and the corresponding
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Fig. 5. Examples of binary masks generated by gm . The original images, the groundtruths, the discriminative probability maps and the corresponding masks
in three iterations are displayed from (a) to (h).

Fig. 6. An example of transferring the segmentation mask to the expected
probability map by the proposed function g f . Downsampling and upsampling
are used to generate the probability map from the binary mask, while δ is a
threshold that binarizes the probability map to preserve important regions.

Fig. 7. The network for the proposed multiple group cosegmentation method.
The class activation map is first obtained by our proposed CAM method.
Then, a local-to-global segmentation network is implemented to segment the
regions by the concatenation of the RGB channels and the activation map
channel. In the train stage, an EM-based iteration is used to obtain the final
segmentation results.

foregrounds F̂i = { f̂i1, · · · , f̂i|Li |}, the fusion step first obtains
the nonoverlapping and overlapping foregrounds by comparing
the results of different classes. The nonoverlapping regions
have unique labels, while the overlapping regions have more
than two labels so that we need to determine the label further.
Here, we reuse the discriminative probability maps as used in
the cosegmentation step to determine the labels by comparing
the probability values, as shown in Fig. 8.

Let an image and its labels be Ii and Li = {li1, · · · , li|Li |};
the discriminative probability maps and cosegmentation fore-
grounds for each label are denoted as M̂i = {M̂i1, · · · , M̂i|Li |}
and F̂i = {F̂i1, · · · , F̂i|Li |}, respectively. The foregrounds are
first classified into certain (nonoverlapping) Rc and uncertain
regions (overlapping regions) Ru (as shown in Fig. 8). The
pixels in Rc are assigned their unique label, and the label
result is denoted as Lc. For each pixel pk in the overlapping
regions, we assign the labels with the larger probability value.
In our network, we first obtain the label map Ml for all pixels
by the max operator. i.e.,

Ml (pk) = li j∗ , i f j∗ = arg max
j

M̂i j (pk) (5)

Then, we use the labels in Ml as the pixel labels in region
Ru and denote the result as Lu . Finally, we combine Lc and
Lu to form the final semantic segmentation result.

IV. EXPERIMENTAL RESULTS

We next verify the proposed method. The experiments
include the experimental setup, subjective results and objective
results on the PASCAL VOC 2012 [57] and MS COCO 2017
[58] datasets. Then, the performance with different δ para-
meters, and the comparisons with cosegmentation methods,
co-saliency detection methods, and CAM generation methods
are presented. The inference speeds are also discussed.

A. PASCAL VOC 2012 Dataset

1) Experimental Setup: We first introduce the experimental
setup of our experiments, including the images for verification,
and the settings for training the classification network and the
local-to-global segmentation network. The proposed method
is verified on the validation and test dataset of the PASCAL
VOC 2012 dataset that contains images of 20 classes. Both
the images and the corresponding image-level labels are used
as inputs. Three steps are implemented to segment the regions
from the test images semantically. The first step classifies the
test images into 20 image groups according to their image-
level labels and trains the classification network to obtain the
classification model using the images of 20 classes. Then,
the class activation map is extracted from the classification
network, and the local-to-global network is used to obtain the
foregrounds in an iteration manner. The third step combines
the foregrounds of cosegmentation to form the final semantic
segmentation results. For the image containing multiple classes
of objects such as ci and c j , we put it into both image groups
of Ci and C j and therefore can obtain the foreground of each
class separately.

We train two networks such as the classification net-
work C N Nc and the local-to-global segmentation network
C N Nlocal−global . For the first network, the backbone is set
to ResNet-101 initialized by the ImageNet dataset. The size
of the image is set to 320 × 320 for input. In the training,
the batch size is set to 32, and the number of epochs is
set to 40. The learning rate is dynamically decreased by the
number of epochs using the logspace function.
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Fig. 8. The detailed flowchart of the proposed method on a specific image. In the multi-group cosegmentation stage, the cosegmentation results are obtained
according to the labels “train” and “person”. In the fusion stage, the foreground segmentation results are divided into the nonoverlapping region and the
overlapping region. The image-level labels are assigned directly to the nonoverlapping region. The labels of overlapping regions are determined via the value
of the class activation maps. Finally, the multiple foreground segmentation regions are combined to form the semantic segmentation result.

Fig. 9. The segmentation results achieved with our method. The original images containing a single class of an object, the discriminative probability map
from the proposed class activation extraction network, our semantic segmentation results, and the groundtruth are displayed.

Fig. 10. Our semantic segmentation results on images containing two class of objects. The activation maps of the two classes, the corresponding segmentation
results from local-to-global segmentation, the semantic segmentation results, and the groundtruths are displayed.

Since the classification network trained on the other image
datasets can also be used to extract CAM of the test images,
different types of modes are established according to the
images used for training. We name them as Dc → Dt ,
where Dc represents the set of images used for training the

classification network, and Dt represents the set of test images.
For example, {val, training} → {val} is the mode that
extracts the CAMs of the images in the validation dataset
based on the classification network trained on the images of
the validation and training dataset. In our method, six types of
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Fig. 11. The segmentation results of multiple classes on the PASCAL VOC
2012 dataset by our method. The first row, second row and third row show the
original images, the segmentation results and the groundtruths, respectively.

modes, namely, {test} → {test}, {test, training} → {test},
{training} → {test}, {val} → {val}, {val, training} →
{val} and {training} → {val}, are considered for the
PASCAL VOC 2012 dataset.

The local-to-global segmentation network is pretrained by
the images in the MS COCO 2017 dataset. The images of
all the classes except the 20 classes in the PASCAL VOC
2012 dataset are used for training. VGG-16 is used as the
backbone network. The training data are composed of the
training images and the discriminative probability maps gen-
erated from the segmentation groundtruth using function g f ,
where the deletion factor δ is set randomly from [0.6, 0.95].
The batch size and the learning rate are set to 10 and 0.0001,
respectively. Since the regions with sizes that are extremely
small and large reduce the segmentation performance, we filter
the extreme training samples by setting vt < 0.1 or vt > 0.95,
where vt = Ab

Aa
with Ab the area of the object region and Aa

the image region.
2) Subjective Results: We next show the subjective results

of our method based on the number of classes contained in
the images. The subjective results are displayed in Fig. 9,
Fig. 10 and Fig. 11, where the images with the single
class, two classes and more than two classes are displayed,
respectively. In Fig. 9, the original images, the corresponding
activation maps, the segmentation results by our local-to-
global segmentation network and the groundtruths are dis-
played. It is seen that the activation maps usually contain a
local part of the objects. Meanwhile, our method successfully
segments the objects from these images, which demonstrates
the effectiveness of our local-to-global segmentation network.
It is also seen that our method successfully segments the
object with multiple instances from the images, which further
demonstrates the effectiveness of the proposed method.

In Fig. 10, the results of images containing two classes are
displayed. It is seen that the object regions of two classes are
highlighted by the class activation maps successfully. It is also
seen that the semantic segmentation results are obtained from
these images successfully.

In Fig. 11, the results of images with more than two classes
are displayed, including the original images, the semantic
segmentation results and the groundtruths. It is seen that the
regions of multiple classes are successfully segmented from
these images.

3) Objective Results: We next display the objective results.
The intersection-over-union (IoU) value is used for the

verification, which is defined as

IoU = Seg ∩ GT

Seg ∪ GT
(6)

where Seg and GT are the segmentation region and the
annotation region, respectively. The larger the IoU value
is, the better the segmentation performance is. For multiple
images, the mean IoU value (mIoU) is used for verification.

The mIoU values of the test and validation dataset are
displayed in Table I. Six types of modes are considered.
For each mode, the mIoU values of each class and their
mIoU value are shown. “iteri” means the results under the
i th iteration.

As seen from Table I, the best mIoU values are 60.3 % and
56.4 % for the test dataset and validation dataset, respectively.
It is also seen that the mIoU values with the training dataset
are obviously better than those without the training dataset
(60.3 vs 57.1 and 56.4 vs 52.9 for the test and validation
dataset, respectively). This result indicates that better acti-
vation maps can be extracted by more images. Moreover,
by comparing the results under different iterations, the seg-
mentation can be obviously improved by the second iteration,
which indicates that a small number of iteration can be used.
Hence, we set the iteration number to three.

We also show the mIoU values by the local-to-global
segmentation network trained from the training dataset of
PASCAL VOC 2012 (Ours+PASCAL) rather than MS COCO
2017 dataset (Ours+COCO) for comparison. The mIoU values
of Ours+PASCAL are shown in Table II. It is seen that the
segmentation performances are improved (63.7 vs 60.3 and
58.6 vs 56.4 for the test and validation dataset, respectively).
Therefore, domain adaptation can be used to improve our
method.

We next display the mIoU values of the existing weakly
supervised semantic segmentation methods for comparison.
The mIoU values are displayed in Table III. It is seen that our
method obtains 56.4 and 60.3 for the validation set and test set,
respectively, which outperforms these existing one-stage-based
and two-stage-based weakly supervised semantic segmentation
methods. Note that the results are obtained without CRF post-
processing. This result further demonstrates the effectiveness
of the proposed method.

B. MS COCO 2017 Dataset

1) Experimental Setup: We next evaluate the proposed
method on the MS COCO 2017 dataset. The validation
dataset that contains 5k images is used for verification. The
ResNet-101 initialized by the ImageNet dataset is used to
train the classification network. The image size, batch size and
training epochs are set to 320×320, 32 and 40, respectively.
The learning rate is dynamically decreased by the number of
epochs using the logspace function. We set δ to 0.9. The mode
of the experiment is {val} → {val}.

2) Subjective Results: The subjective results are displayed
in Fig. 12, including the images, the segmentation results and
the groundtruths. The images containing different numbers of
classes are shown. It is seen that the object regions with a large
size can be successfully segmented, such as “Aeroplane” and
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TABLE I

THE MIOU VALUES BY THE PROPOSED METHOD. THE MODE MEANS THE DATASET USED FOR TRAINING THE CLASSIFICATION MODEL
FOR ACTIVATION MAP GENERATION. THE LOCAL-TO-GLOBAL NETWORK IS TRAINED BY THE MS COCO

2017 DATASET EXCEPT FOR THE 20 CLASSES IN THE PASCAL VOC 2012 DATASET

TABLE II

THE MIOU VALUES THAT ARE SIMILAR TO TABLE I EXCEPT FOR THE LOCAL-TO-GLOBAL NETWORK.
THE LOCAL-TO-GLOBAL NETWORK IS TRAINED BY THE PASCAL VOC 2012 TRAINING DATASET

“Sheep” in the first and second image. However, the proposed
method fails to segment the regions of small objects, such
as “Person” in the sixth image. This occurs because small
objects may be dropped by the pooling operation. We will
further study segmenting small objects in the future.

3) Objective Results: The mIoU values of the proposed
method on the MS COCO 2017 dataset are shown in Table IV,
where the mIoU value of our method is 28.1. The results of the

existing methods such as SEC [14], BFBP [59] and DSRG [60]
are also displayed for comparison. The method of SEC [14]
learns the segmentation network from weak image-level labels
by multiple losses correlated to the seed, region expansion
and boundary fitness. The method of BFBP [59] proposes a
weakly supervised semantic segmentation method based on
prior generation, region binarization and CRF processing. The
method of DSRG [60] expands regions from the region seeds
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TABLE III

THE MIOU VALUES ON THE PASCAL VOC 2012 DATASET. OURS
AND OURS+TRAINING INDICATE THE SEGMENTATION WITHOUT AND

WITH THE TRAINING DATASET, RESPECTIVELY

Fig. 12. The subjective results of the proposed method on the MS COCO
2017 dataset. The input images, the segmentation results, and the groundtruths
are displayed. The images containing different numbers of classes are shown.

TABLE IV

THE MIOU VALUES OF THE PROPOSED METHOD AND EXISTING

METHODS ON THE MS COCO 2017 VAL DATASET

iteratively to obtain the object regions. It is seen that the
proposed method outperforms these comparison methods.

C. Discussion

We display the results of our method under different settings
of the parameter δ, which is used in the iteration process
to generate discriminative probability maps. The results are
displayed in Table V, with mode {train, val} → {val}. The
values of δ are shown in the first column. The column of iteri
displays the results of the i th iteration. It is seen that the best
mIoU value is obtained by δ = 0.9 as used in our experiment.
Meanwhile, it is seen that comparable results can be obtained
by setting δ > 0.8, and the mIoU values are very close for
δ > 0.8, which demonstrates the robustness of our method to
the setting of δ.

We next compare our method with cosegmentation and
saliency detection methods. To compare fairly with these
methods, we re-calculate the mIoU based on the criteria of
cosegmentation which calculates the value based on fore-
grounds of each class. The results are displayed in Table VI,
where five methods such as DCSM [61], STC [62], ICSC
[63], ICSG [64] and DOCS [65] are considered. The methods

TABLE V

THE RESULTS OF THE PROPOSED METHOD WITH DIFFERENT SETTINGS
OF δ . THE PASCAL VOC 2012 VALIDATION DATASET AND THE

MODE OF {train, val} → {val} ARE CONSIDERED

TABLE VI

THE MIOU VALUES OF THE PROPOSED METHOD AND EXISTING

COSEGMENTATION, SALIENCY DETECTION METHODS ON

PASCAL VOC 2012 VALIDATION DATASET

TABLE VII

THE MIOU VALUES AND LOCALIZATION ERROR OF CAM
BY OUR METHOD AND THE COMPARISON METHODS

of DCSM [61] and STC [62] are weakly-supervised single
image based saliency detection methods. The method of ICSC
[63] is unsupervised co-saliency method, and the methods
of ICSG [64] and DOCS [65] are cosegmentation methods
aided by pixel-level annotations. The mIoU values presented
in these papers are used for comparison. The mIoU value
of our method is 57.2, which outperforms these comparison
methods except DOCS that uses pixel-level annotations. This
demonstrates the effectiveness of the proposed method.

We also compare the proposed CAM generation method
with other CAM-like methods under two evaluation metrics
such as mIoU and mean localization error (loc error). The
larger mIoU value and lower loc error mean better perfor-
mance. To compute the mIoU value between CAM map
and segmentation groundtruth, we normalize the CAM map
to binary mask by threshold 0.15 as usually used in CAM
verification. As can be seen from the Table VII, the mIoU
value of the proposed CAM network is 35.5, which is better
than the methods of Grad-cam++ (22.9) [66] and Aerial-cam
(27.0) [67]. Meanwhile, the loc error of the proposed CAM
network is 55.0, which is lower than Grad-cam++ (71.9)
[66] and Aerial-cam (64.1) [67]. This further demonstrates the
effectiveness of the proposed CAM generation method.

We next evaluate the algorithmic complexity of the proposed
method. Let Tvgg and n̄ be the running time of the VGG-16
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network and the average number of classes in each image,
respectively. The algorithmic complexity of the proposed
method is Tvgg · N + Tvgg · n̄ · 3N = (1 + 3n̄)Tvgg N , where N
is the number of images, Tvgg · N is the cost of extracting the
class activation map, and Tvgg · n̄ · 3N is the cost of the local-
to-global segmentation network with three as the iteration
number. By treating n̄ as a constant value, the algorithmic
complexity of the proposed method is O(Tvgg · N), which
is similar to many existing supervised semantic segmentation
methods such as FCN and DeepLabv3 when using VGG-16
as the backbone network for a fair comparison. In practical
applications, the running time of the proposed method is
0.21 s per image (0.09 s for CAM generation and 0.04 s
per segmentation iteration) based on a 1080ti GPU, while
the inference time of the FCN network is 0.09 s per image
and is faster than the proposed method. This result occurs
because the VGG-16 network is implemented multiple times
in our method. Meanwhile, the inference time of local-to-
global segmentation is 0.04 s per image and per iteration,
which is smaller than that of FCN. The reason is that the
binary segmentation task considered in our method has a fewer
parameters for convolution than that of FCN, which considers
the classification of 20 classes.

V. CONCLUSION

This paper proposes a new cosegmentation and fusion-
based strategy for weakly supervised semantic segmentation,
which can sufficiently use the labels of both the training and
testing images and avoid the drawbacks of the local priors and
rough pseudo-annotations that appear in the traditional weakly
supervised semantic segmentation method. A new multiple
group cosegmentation by considering discriminative region
extraction and local-to-global segmentation is proposed. Two
subnetworks that include the discriminative region extraction
network and the local-to-global segmentation network are
proposed to form the multiple group cosegmentation network.
A simple fusion method that considers the class activation map
is finally proposed to form the semantic segmentation. We ver-
ify the proposed method on the PASCAL VOC 2012 and MS
COCO 2017 datasets. The experimental results demonstrate
that our method can obtain larger mIoU values than those of
the existing weakly supervised semantic segmentation meth-
ods.
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